[R] Is using glht with "Tukey" for lme post-hoc comparisons an appropriate substitute to TukeyHSD?

Anne Aubut an438516 at Dal.Ca
Wed Jan 4 01:26:24 CET 2012


Hello Richard,
Thank you so much for getting back to me.  In the ?glht example, the  
confidence intervals are the same and the p-values are very similar.   
I ran a 2-way ANOVA and compared the results for the glht code with  
"Tukey" and TukeyHSD for "Treatment", which was a significant main  
effect (output is below).  I found that the p-values for glht and  
TukeyHSD differed quite a bit.  If glht with "Tukey" is just another  
method to run Tukey HSD, I don't understand why the two methods  
yeilded different results.  If they are not equivalent, how is glht  
calculating the p-values?  I also ran my 2-way ANOVA without the  
Treatment*Habitat interaction and I found that the glht and TukeyHSD  
methods did provide the same p-values (I did not include this output).  
Does this mean that glht is only equivalent to TukeyHSD when  
non-significant interactions are removed? Should I be removing all of  
my non-significant interaction terms prior to running post-hoc testing  
with glht?

Treatment Habitat    pActive
        1G       E 0.18541667
        1G       E 0.02500000
        1G       E 0.04208333
        1G       E 0.14847222
        1G       E 0.08055556
        1G       E 0.16777778
        1G       S 0.05111111
        1G       S 0.19083333
        1G       S 0.12333333
        1G       S 0.35722222
        1G       S 0.43750000
        1G       S 0.02638889
        1R       E 0.38736111
        1R       E 0.51180556
        1R       E 0.14916667
        1R       E 0.61041667
        1R       E 0.36013889
        1R       E 0.11347222
        1R       S 0.10805556
        1R       S 0.18722222
        1R       S 0.27625000
        1R       S 0.25236111
        1R       S 0.18208333
        1R       S 0.16152778
        2G       E 0.25916667
        2G       E 0.37194444
        2G       E 0.02263889
        2G       E 0.18402778
        2G       E 0.45750000
        2G       E 0.02250000
        2G       S 0.02958333
        2G       S 0.10069444
        2G       S 0.12875000
        2G       S 0.11361111
        2G       S 0.13680556
        2G       S 0.07875000
        2R       E 0.57513889
        2R       E 0.12888889
        2R       E 0.32000000
        2R       E 0.55736111
        2R       E 0.78888889
        2R       E 0.65055556
        2R       S 0.35527778
        2R       S 0.48361111
        2R       S 0.21361111
        2R       S 0.35277778
        2R       S 0.52611111
        2R       S 0.29416667
       R+G       E 0.37027778
       R+G       E 0.20263889
       R+G       E 0.07194444
       R+G       E 0.49041667
       R+G       E 0.21847222
       R+G       E 0.13555556
       R+G       S 0.20861111
       R+G       S 0.23986111
       R+G       S 0.02180556
       R+G       S 0.23250000
       R+G       S 0.28916667
       R+G       S 0.50208333

logitpAct<-logit(Active$pActive)
model3<-aov(logitAct~Treatment*Habitat,data=Active)
summary(glht(model3, linfct=mcp(Treatment="Tukey")))

  Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts


Fit: aov(formula = logitAct ~ Treatment * Habitat, data = Active)

Linear Hypotheses:
               Estimate Std. Error t value Pr(>|t|)
1R - 1G == 0    1.6196     0.5936   2.728  0.06369 .
2G - 1G == 0    0.5468     0.5936   0.921  0.88736
2R - 1G == 0    2.3100     0.5936   3.892  0.00264 **
R+G - 1G == 0   1.0713     0.5936   1.805  0.38235
2G - 1R == 0   -1.0728     0.5936  -1.807  0.38095
2R - 1R == 0    0.6904     0.5936   1.163  0.77204
R+G - 1R == 0  -0.5483     0.5936  -0.924  0.88639
2R - 2G == 0    1.7632     0.5936   2.970  0.03516 *
R+G - 2G == 0   0.5245     0.5936   0.884  0.90164
R+G - 2R == 0  -1.2387     0.5936  -2.087  0.24185
---
Signif. codes:  0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
(Adjusted p values reported -- single-step method)

Warning message:
In mcp2matrix(model, linfct = linfct) :
   covariate interactions found -- default contrast might be inappropriate


TukeyHSD(model3)

  Tukey multiple comparisons of means
     95% family-wise confidence level

Fit: aov(formula = logitAct ~ Treatment * Habitat, data = Active)

$Treatment
                diff        lwr       upr     p adj
1R-1G   0.976208536 -0.2115769 2.1639939 0.1538496
2G-1G   0.008919932 -1.1788655 1.1967053 1.0000000
2R-1G   1.774309645  0.5865243 2.9620950 0.0009174
R+G-1G  0.735518351 -0.4522670 1.9233037 0.4123535
2G-1R  -0.967288603 -2.1550740 0.2204968 0.1605251
2R-1R   0.798101110 -0.3896843 1.9858865 0.3299881
R+G-1R -0.240690185 -1.4284756 0.9470952 0.9783561
2R-2G   1.765389713  0.5776043 2.9531751 0.0009817
R+G-2G  0.726598419 -0.4611870 1.9143838 0.4247935
R+G-2R -1.038791294 -2.2265767 0.1489941 0.1128708


Quoting "Richard M. Heiberger" <rmh at temple.edu>:

> glht is probably what you should be using.  Both TukeyHSD and glht give
> essesntially identical confidence intervals for
> the example in ?glht.  What aren't you satisfied with?
>
> amod <- aov(breaks ~ tension, data = warpbreaks)
> confint(glht(amod, linfct = mcp(tension = "Tukey")))
> TukeyHSD(amod)
> On Mon, Jan 2, 2012 at 6:19 PM, Anne Aubut <an438516 at dal.ca> wrote:
>
>> Hello,
>>
>> I am trying to determine the most appropriate way to run post-hoc
>> comparisons on my lme model.  I had originally planned to use Tukey HSD
>> method as I am interested in all possible comparisons between my treatment
>> levels.  TukeyHSD, however, does not work with lme.  The only other code
>> that I was able to find, and which also seems to be widely used, is glht
>> specified with Tukey:
>>
>> summary(glht(model, linfct=mcp(Treatment="Tukey"))**)
>>
>> Out of curiosity, I ran TukeyHSD and the glht code for a simple ANOVA and
>> found that they had quite different p-values.  If the glht code is not
>> running TukeyHSD, what does the "Tukey" in the code specify?  Is using glht
>> code appropriate if I am interested in a substitute for TukeyHSD?  Are
>> there any other options for multiple comparisons for lme models?  I am
>> really interested in knowing if the Tukey contrasts generated from the glht
>> code is providing me with appropriate p-values for my post-hoc comparisons.
>>
>> I feel like I have reached a dead end and am not sure where else to look
>> for information on this issue. I would be grateful for any feedback on this
>> matter.
>>
>>
>> Anne Cheverie
>> M.Sc. Candidate
>> Dalhousie University
>>
>> ______________________________**________________
>> R-help at r-project.org mailing list
>> https://stat.ethz.ch/mailman/**listinfo/r-help<https://stat.ethz.ch/mailman/listinfo/r-help>
>> PLEASE do read the posting guide http://www.R-project.org/**
>> posting-guide.html <http://www.r-project.org/posting-guide.html>
>> and provide commented, minimal, self-contained, reproducible code.
>>
>



More information about the R-help mailing list