[BioC] Limma double paired analysis
john seers (IFR)
john.seers at bbsrc.ac.uk
Fri Sep 19 13:31:00 CEST 2008
Hello All
I am having some difficulty in trying to use limma for a paired
analysis. Can anybody suggest an approach that would work?
The arrays are Affymetrix.
The experiment arrays look like:
Volunteer1 Ctrl <---------->Placebo<-------Time
passes------>Ctrl<------------>Drug
Volunteer2 Ctrl <---------->Placebo<-------Time
passes------>Ctrl<------------>Drug
Volunteer3 Ctrl <---------->Drug<----------Time
passes------>Ctrl<------------>Placebo
...
That is a control sample is taken. A treatment is given - Placebo or
Drug. Another sample is taken. A suitable time period passes and this is
repeated but with the Placebo or Drug treatments reversed.
How can this be analysed?
Looking at the Limma User Guide 8.3 Paired Samples looks to be a good
start. But is it possible to do some form of double pairing analysis?
That is I can pair the Ctrl arrays with their paired treatment. But then
I want to pair the Placebo with the Drug. How can I do this using limma?
========================================================================
=============
So far I have something like the following, if it helps. How can I
factor in that Drug Treatment and the Placebo treatment are paired?
Treatment<-c("Drug", "Placebo", "ACtrl", "ACtrl", "ACtrl", "Drug",
"ACtrl",
"Placebo", "ACtrl", "Placebo", "ACtrl", "Drug", "Placebo", "ACtrl",
"ACtrl",
"Drug", "Drug", "ACtrl", "ACtrl", "Placebo", "Placebo", "ACtrl",
"Drug", "ACtrl", "Drug", "Placebo", "ACtrl", "ACtrl", "ACtrl",
"Placebo",
"ACtrl", "Drug", "ACtrl", "Placebo", "Drug", "ACtrl", "Placebo",
"ACtrl",
"ACtrl", "Drug", "Placebo", "ACtrl", "Drug", "ACtrl", "ACtrl",
"ACtrl",
"Drug", "Placebo")
Pairing<-c("A13", "B13", "B13", "A13", "A17", "B17", "B17", "A17", "B8",
"A8", "A8",
"B8", "B18", "B18", "A18", "A18", "A6", "B6", "A6", "B6",
"A33", "B33",
"B33", "A33", "A27", "B27", "A27", "B27", "A22", "B22", "B22",
"A22", "B11", "A11",
"B11", "A11", "A28", "A28", "B28", "B28", "A16", "A16", "B16",
"B16", "A20", "B20", "A20", "B20")
Pairing<-factor(Pairing)
Treatment<-factor(Treatment)
design<-model.matrix(~ 0 + Pairing + Treatment)
fit<-lmFit(eset, design)
contrast.matrix<-makeContrasts(AbovePlacebo = TreatmentDrug -
TreatmentPlacebo, levels=design)
fit2<-contrasts.fit(fit, contrast.matrix)
eb<-eBayes(fit2)
tt<-topTable(eb)
Any help gratefully received.
Regards and thanks
John Seers
---
John Seers
Bioinformatics & Statistics
Institute of Food Research
Norwich Research Park
Colney
Norwich
NR4 7UA
Location: IFR1 N102
PC Machine ID: N198
tel +44 (0)1603 251497
fax +44 (0)1603 507723
e-mail john.seers at bbsrc.ac.uk
e-disclaimer at http://www.ifr.ac.uk/edisclaimer/
Web sites:
www.ifr.ac.uk
www.foodandhealthnetwork.com
More information about the Bioconductor
mailing list