[R-sig-ME] separate variance-covariance matrix for each level of grouping variable
Thomas MERKLING
thom@@merk||ng00 @end|ng |rom gm@||@com
Thu Aug 22 12:10:33 CEST 2019
Hi all,
I'm interested in modeling a separate variance-covariance matrix for
different levels of a factor variable. I have a SAS example (using the
epilepsy from the brms package as an example):
proc mixed data = epilepsy method = reml;
class patient Trt;
model count = Trt /s ddfm = satterth;
random int zAge / type = un subject=patient group=Trt;
run;
The gr argument in the brms package seems to enable to do that too, as the
group-level effects correspond to a random intercept and slope and a
covariance between the two estimated separately for each level of the Trt
variable.
fit3 <- brm(count ~ Trt + (zAge|gr(patient, by = Trt)), data = epilepsy)
Group-Level Effects:
~patient (Number of levels: 59)
Estimate Est.Error l-95% CI u-95% CI
Eff.Sample Rhat
sd(Intercept:Trt0) 7.86 1.41 5.39 10.91
1071 1.00
sd(zAge:Trt0) 4.14 2.62 0.25 9.97
546 1.00
sd(Intercept:Trt1) 9.23 1.96 5.37 13.31
691 1.00
sd(zAge:Trt1) 7.60 2.24 3.92 12.54
586 1.01
cor(Intercept:Trt0,zAge:Trt0) 0.57 0.42 -0.60 0.99
1252 1.00
cor(Intercept:Trt1,zAge:Trt1) -0.85 0.15 -1.00 -0.45
594 1.00
How do I need to specify the random effect part of the model in lme4 or
glmmTMB to get the same results?
I have tried: fit4 <- glmmTMB(count ~ Trt + (0 + Trt*zAge | patient), data
= epilepsy)
but it seems to calculate correlations between each pair of random
intercept and slope and not only within a factor level.
Random effects:
Conditional model:
Groups Name Variance Std.Dev. Corr
patient Trt0 56.221 7.498
Trt1 103.601 10.178 -0.92
zAge 15.793 3.974 0.94 -0.97
Trt1:zAge 6.443 2.538 0.78 -0.92 0.80
Residual 32.211 5.675
Thanks in advance for your help,
Thomas
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list