[R-sig-ME] Negative binomial GLMM model/variables selection based in marginal R2 and conditional R2
ASANTOS
@|ex@ndre@@nto@br @end|ng |rom y@hoo@com@br
Thu Jul 11 23:45:00 CEST 2019
Dear R-Mixed-Models Members,
?????? ?????? I've like to chose my negative binomial GLMM better
model/variables based in marginal R2 (variance explained by the fixed
factor(s)) and conditional R2 (variance explained by both the fixed and
random factors), but some times I have a great dissimilarities in this
values, if I have gain in the conditional R2, my marginal R2 is poor and
vice-versa (I make a little exercise by changes in the position on fixed
and random effects in the models). In my example:
*A) Model 1 - Inf_Leaves ~ Inf_YST + Age_months + (1 | Trat) - balance
values between marginal and conditional R2*
R2m R2c
delta 0.4282151 0.5203953
lognormal 0.5090799 0.6186677
trigamma 0.3153259 0.3832049
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) ['glmerMod']
Family: Negative Binomial(0.9207)?? ( log )
Formula: Inf_Leaves ~ Inf_YST + Age_months + (1 | Trat)
???? Data: d3
???????? AIC?????????? BIC???? logLik deviance df.resid
????4500.6???? 4521.9?? -2245.3???? 4490.6?????????? 519
Scaled residuals:
Min?????????? 1Q?? Median?????????? 3Q???????? Max
-0.9413 -0.7254 -0.4113?? 0.5294?? 7.2853
Random effects:
Groups Name?????????????? Variance Std.Dev.
Trat???? (Intercept) 0.2176 ????0.4664
Number of obs: 524, groups:?? Trat, 4
Fixed effects:
?????????????????????????? Estimate Std. Error z value Pr(>|z|)
(Intercept)?? 0.2847245?? 0.2913635???? 0.977 0.328
Inf_YST???????? -0.0016482?? 0.0003483?? -4.732 2.22e-06 ***
Age_months???? 0.3144764?? 0.0183616?? 17.127?? < 2e-16 ***
---
Signif. codes:?? 0 ???***??? 0.001 ???**??? 0.01 ???*??? 0.05 ???.??? 0.1 ??? ??? 1
Correlation of Fixed Effects:
???????????????????? (Intr) In_YST
Inf_YST???????? 0.171
Age_months -0.558 -0.532
convergence code: 0
Model failed to converge with max|grad| = 0.00631137 (tol = 0.001,
component 1)
Model is nearly unidentifiable: very large eigenvalue
- Rescale variables?
Model is nearly unidentifiable: large eigenvalue ratio
- Rescale variables?
*B) Model 2 -?? Inf_Leaves ~ Inf_YST + Trat + (1 | Age_months) - a better
conditional but poor marginal R2*
R2m R2c
delta???????? 0.1626844 0.7257397
lognormal 0.1725712 0.7698453
trigamma?? 0.1489258 0.6643626
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) ['glmerMod']
Family: Negative Binomial(1.8431)?? ( log )
Formula: Inf_Leaves ~ Inf_YST + Trat + (1 | Age_months)
???? Data: d3
???????? AIC?????????? BIC logLik deviance df.resid
????4121.5???? 4151.4 -2053.8???? 4107.5?????????? 517
Scaled residuals:
Min?????????? 1Q?? Median?????????? 3Q???????? Max
-1.2776 -0.6703 -0.1486?? 0.3279?? 5.4019
Random effects:
Groups Name?????????????? Variance Std.Dev.
Age_months (Intercept) 1.172?????? 1.083
Number of obs: 524, groups:?? Age_months, 4
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept)???????????????? 3.4859551 0.5492043???? 6.347 2.19e-10 ***
Inf_YST???????????????????????? 0.0005702 0.0002864???? 1.991???? 0.0465 *
TratC1-Insecticide -1.1081610 0.1012478 -10.945?? < 2e-16 ***
TratC2-Control???????? -0.7859302 0.1058146?? -7.427 1.11e-13 ***
TratC2-Insecticide -1.3833545 0.1041882 -13.277?? < 2e-16 ***
---
Signif. codes:?? 0 ???***??? 0.001 ???**??? 0.01 ???*??? 0.05 ???.??? 0.1 ??? ??? 1
Correlation of Fixed Effects:
?????????????????????? (Intr) In_YST TrC1-I TrC2-C
Inf_YST???????? -0.122
TrtC1-Insct -0.103 0.189
TrtC2-Cntrl -0.104 0.265?? 0.436
TrtC2-Insct -0.097 0.221?? 0.424?? 0.504
convergence code: 0
Model failed to converge with max|grad| = 0.00398879 (tol = 0.001,
component 1)
Model is nearly unidentifiable: very large eigenvalue
- Rescale variables?
Model is nearly unidentifiable: large eigenvalue ratio
- Rescale variables?
And my questions are:
1) Marginal R2 is a good metric for identify a bad fixed effect choose
in my models B? Despite a better conditional R2 comparing of conditional
R2 in my model A.
2) If I'm sure about my fixed and random effects, it is better a final
model with high values in both R2 or I choose based in the high value in
conditional R2?
Thanks in advanced,
Alexandre
--
======================================================================
Alexandre dos Santos
Prote????o Florestal
IFMT - Instituto Federal de Educa????o, Ci??ncia e Tecnologia de Mato Grosso
Campus C??ceres
Caixa Postal 244
Avenida dos Ramires, s/n
Bairro: Distrito Industrial
C??ceres - MT CEP: 78.200-000
Fone: (+55) 65 99686-6970 (VIVO) (+55) 65 3221-2674 (FIXO)
alexandre.santos using cas.ifmt.edu.br
Lattes: http://lattes.cnpq.br/1360403201088680
OrcID: orcid.org/0000-0001-8232-6722
Researchgate: www.researchgate.net/profile/Alexandre_Santos10
LinkedIn: br.linkedin.com/in/alexandre-dos-santos-87961635
Mendeley:www.mendeley.com/profiles/alexandre-dos-santos6/
======================================================================
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list