[R] Need help with time series
CALUM POLWART
po|c1410 @end|ng |rom gm@||@com
Wed Jan 15 00:50:48 CET 2025
acf wants a time series, so tries to make one:
as.ts(myts)
Time Series:
Start = 19357
End = 20027
Frequency = 1
[1] 24957 NA NA NA NA NA NA NA NA NA
[11] NA NA NA NA NA NA NA NA NA NA
[21] NA NA NA NA NA NA NA NA NA NA
[31] NA 10577 NA NA NA NA NA NA NA NA
[41] NA NA NA NA NA NA NA NA NA NA
[51] NA NA NA NA NA NA NA NA NA NA
[61] NA NA -18516 NA NA NA NA NA NA NA
[71] NA NA NA NA NA NA NA NA NA NA
[81] NA NA NA NA NA NA NA NA NA NA
[91] 2940 NA NA NA NA NA NA NA NA NA
[101] NA NA NA NA NA NA NA NA NA NA
[111] NA NA NA NA NA NA NA NA NA NA
[121] NA -1458 NA NA NA NA NA NA NA NA
[131] NA NA
I'm not familiar enough with TS to know how you make them 31d month
units...
On Tue, 14 Jan 2025, 23:08 Naresh Gurbuxani, <naresh_gurbuxani using hotmail.com>
wrote:
> For below data, I find strange results in basic time series analysis. Why
> does acf() function find missing values? When crossprod(xmat) is
> invertible, why does arima() find system exactly singular?
>
> Thanks,
> Naresh
>
> x <- c(24957, 10577, -18516, 2940, -1458, 32704, -26697, -46902, 48413,
> -11937, 2043, 26431, -55336, -16838, 89651, 25363, -50388, -41012,
> -28242, -18213, 58759, -15290, -7413, 124098)
>
> myts <- zoo::zoo(x, seq.Date(as.Date("2022-12-31"),
> as.Date("2024-11-30"), by = "1 month"))
>
> > myts
>
> 2022-12-31 2023-01-31 2023-03-03 2023-03-31 2023-05-01 2023-05-31
> 2023-07-01
>
> 24957 10577 -18516 2940 -1458 32704
> -26697
>
> 2023-07-31 2023-08-31 2023-10-01 2023-10-31 2023-12-01 2023-12-31
> 2024-01-31
>
> -46902 48413 -11937 2043 26431 -55336
> -16838
>
> 2024-03-02 2024-03-31 2024-05-01 2024-05-31 2024-07-01 2024-07-31
> 2024-08-31
>
> 89651 25363 -50388 -41012 -28242 -18213
> 58759
>
> 2024-10-01 2024-10-31
>
> -15290 -7413
>
> > coredata(myts) |> class()
>
> [1] "numeric"
>
> > acf(myts, lag.max = 2)
>
> Error in na.fail.default(as.ts(x)) : missing values in object
>
> > arima(myts, order = c(1, 0, 0))
>
> Error in solve.default(res$hessian * n.used, A) :
>
> Lapack routine dgesv: system is exactly singular: U[1,1] = 0
>
> > xmat <- na.omit(cbind(x = myts, xlag1 = lag(myts, k = -1)))
>
> > crossprod(xmat) |> solve()
>
> x xlag1
>
> x 3.488838e-11 1.949958e-12
>
> xlag1 1.949958e-12 3.421268e-11
>
>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> https://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
[[alternative HTML version deleted]]
More information about the R-help
mailing list