[R] DPLYR Multiple Mutate Statements On Same DataFrame

Rui Barradas ru|pb@rr@d@@ @end|ng |rom @@po@pt
Fri Oct 18 09:27:56 CEST 2024


Às 22:50 de 17/10/2024, Sparks, John escreveu:
> Hi R Helpers,
> 
> I have been looking for an example of how to execute different dplyr mutate statements on the same dataframe in a single step.  I show how to do what I want to do by going from df0 to df1 to df2 to df3 by applying a mutate statement to each dataframe in sequence, but I would like to know if there is a way to execute this in a single step; so simply go from df0 to df1 while executing all the transformations.   See example below.
> 
> Guidance would be appreciated.
> --John J. Sparks, Ph.D.
> 
> library(dplyr)
> df0<-structure(list(SeqNum = c(1L, 2L, 3L, 4L, 5L, 6L, 8L, 9L, 10L,
> 11L, 12L, 13L, 14L, 15L, 16L, 18L, 19L, 21L, 22L, 23L), MOSTYP = c(37L,
> 41L, 41L, 13L, 3L, 27L, 37L, 37L, 15L, 14L, 13L, 37L, 4L, 27L,
> 37L, 26L, 17L, 37L, 37L, 17L), MGEMOM = c(1L, 1L, 1L, 1L, 1L,
> 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L),
>      MGODRK = c(3L, 2L, 2L, 3L, 4L, 2L, 2L, 2L, 3L, 4L, 3L, 2L,
>      3L, 1L, 2L, 3L, 4L, 4L, 3L, 3L), MOSHOO = c(7L, 7L, 7L, 2L,
>      9L, 4L, 7L, 7L, 2L, 2L, 2L, 7L, 9L, 4L, 7L, 4L, 2L, 7L, 7L,
>      2L), MRELGE = c(0L, 1L, 0L, 2L, 1L, 0L, 0L, 0L, 3L, 1L, 1L,
>      1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 1L), MSKB2 = c(5L, 4L, 4L,
>      3L, 4L, 5L, 7L, 1L, 5L, 4L, 3L, 4L, 5L, 6L, 7L, 5L, 4L, 6L,
>      4L, 7L), MFWEKI = c(1L, 1L, 2L, 2L, 1L, 0L, 0L, 3L, 0L, 1L,
>      2L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L), MAANTH = c(3L, 4L,
>      4L, 4L, 4L, 5L, 2L, 6L, 2L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 3L,
>      3L, 3L, 2L), MHHUUR = c(2L, 2L, 4L, 2L, 2L, 3L, 0L, 3L, 2L,
>      2L, 2L, 3L, 1L, 6L, 0L, 2L, 2L, 0L, 2L, 2L), MSKA = c(1L,
>      0L, 4L, 2L, 2L, 3L, 0L, 3L, 2L, 0L, 2L, 3L, 1L, 5L, 0L, 0L,
>      1L, 0L, 0L, 1L), MAUT2 = c(2L, 4L, 4L, 3L, 4L, 5L, 5L, 3L,
>      2L, 3L, 3L, 4L, 4L, 3L, 5L, 2L, 3L, 3L, 2L, 3L), MFALLE = c(1L,
>      0L, 0L, 3L, 5L, 0L, 0L, 0L, 0L, 4L, 1L, 1L, 2L, 2L, 0L, 2L,
>      5L, 0L, 0L, 3L), MGEMLE = c(1L, 0L, 0L, 0L, 4L, 0L, 0L, 0L,
>      0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 3L, 2L, 0L), MAUT1 = c(2L,
>      5L, 7L, 3L, 0L, 4L, 2L, 1L, 3L, 9L, 5L, 3L, 2L, 4L, 2L, 1L,
>      3L, 0L, 4L, 2L), MINKGE = c(2L, 4L, 2L, 2L, 0L, 2L, 2L, 1L,
>      3L, 0L, 1L, 4L, 2L, 2L, 2L, 5L, 1L, 0L, 3L, 1L), MOPLHO = c(1L,
>      0L, 0L, 0L, 0L, 2L, 2L, 1L, 2L, 0L, 0L, 1L, 0L, 0L, 2L, 0L,
>      0L, 0L, 0L, 0L), MGODPR = c(1L, 2L, 2L, 0L, 1L, 3L, 2L, 3L,
>      2L, 1L, 2L, 3L, 0L, 3L, 2L, 2L, 2L, 0L, 2L, 1L), MAUT0 = c(8L,
>      6L, 9L, 7L, 5L, 9L, 6L, 7L, 6L, 5L, 4L, 7L, 8L, 5L, 6L, 7L,
>      5L, 9L, 9L, 5L), MSKB1 = c(0L, 2L, 4L, 1L, 0L, 5L, 2L, 7L,
>      2L, 0L, 3L, 3L, 3L, 4L, 2L, 0L, 2L, 3L, 3L, 1L), MSKC = c(4L,
>      5L, 3L, 4L, 6L, 3L, 3L, 2L, 4L, 8L, 3L, 3L, 4L, 3L, 3L, 4L,
>      4L, 3L, 3L, 5L), PAANHA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), PWAPAR = c(0L,
>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>      0L, 0L, 0L, 0L), PPERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AMOTSC = c(0L,
>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>      0L, 0L, 0L, 0L), APERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AWAPAR = c(1L,
>      1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L,
>      1L, 0L, 1L, 1L), Resp = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
>      0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), row.names = c(NA,
> 20L), class = "data.frame")
> 
>             
> df1<-df0 %>%
>    mutate(across(starts_with('P'),~ifelse(.x==0,   0,
>                                    ifelse(.x==1,   25,
>                                                   ifelse(.x==2,   75,
>                                                   ifelse(.x==3,  150,
>                                                   ifelse(.x==4,  350,
>                                                   ifelse(.x==5,  750,
>                                                   ifelse(.x==6, 3000,
>                                                   ifelse(.x==7, 7500,
>                                                   ifelse(.x==8,15000,
>                                                   ifelse(.x==9,30000,
>                                                   -99))))))))))))
> 
> df2<-df1 %>%
> mutate_at(vars(MRELGE:MSKC),~ifelse(.x==0,  0,
>                               ifelse(.x==1,  5,
>                                                       -99)))
> df3<-df2 %>%
> mutate_at(vars(MGODRK),~ifelse(.x==0,  0,
>                          ifelse(.x==1,  5,
>                                                       -99)))
> 
> 
> 
> 
> 	[[alternative HTML version deleted]]
> 
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide https://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
Hello,

Use chained mutate() %>% mutate(). In the 2nd mutate I don't even have 
to pipe a third time, the final variable is changed in the same 
instruction.

Also use mutate(across(...)), mutate_at is deprecated.

And use ?case_when instead of nested ifelse's. It's much cleaner.

As you can see, the result is identical to your code's result.



library(dplyr)

df3b <- df0 %>%
   mutate(
     across(starts_with('P'), ~case_when(
       .x == 0 ~ 0,
       .x == 1 ~ 25,
       .x == 2 ~ 75,
       .x == 3 ~ 150,
       .x == 4 ~ 350,
       .x == 5 ~ 750,
       .x == 6 ~ 3000,
       .x == 7 ~ 7500,
       .x == 8 ~ 15000,
       .x == 9 ~ 30000,
       TRUE ~ -99
     ))
   ) %>%
   mutate(
     across(MRELGE:MSKC, ~case_when(
       .x == 0 ~ 0,
       .x == 1 ~ 5,
       TRUE ~ -99
     )),
     MGODRK = case_when(
       MGODRK == 0 ~ 0,
       MGODRK == 1 ~ 5,
       TRUE ~ -99
     ))

identical(df3, df3b)
# [1] TRUE


And you can have just one mutate, as long as you respect the order the 
variables are changed.



df3c <- df0 %>%
   mutate(
     across(starts_with('P'), ~case_when(
       .x == 0 ~ 0,
       .x == 1 ~ 25,
       .x == 2 ~ 75,
       .x == 3 ~ 150,
       .x == 4 ~ 350,
       .x == 5 ~ 750,
       .x == 6 ~ 3000,
       .x == 7 ~ 7500,
       .x == 8 ~ 15000,
       .x == 9 ~ 30000,
       TRUE ~ -99
     )),
     across(MRELGE:MSKC, ~case_when(
       .x == 0 ~ 0,
       .x == 1 ~ 5,
       TRUE ~ -99
     )),
     MGODRK = case_when(
       MGODRK == 0 ~ 0,
       MGODRK == 1 ~ 5,
       TRUE ~ -99
     )
   )

identical(df3, df3c)
# [1] TRUE


Hope this helps,

Rui Barradas


-- 
Este e-mail foi analisado pelo software antivírus AVG para verificar a presença de vírus.
www.avg.com



More information about the R-help mailing list