[R] running crossvalidation many times MSE for Lasso regression
Bert Gunter
bgunter@4567 @end|ng |rom gm@||@com
Mon Oct 23 01:01:48 CEST 2023
No error message shown Please include the error message so that it is
not necessary to rerun your code. This might enable someone to see the
problem without running the code (e.g. downloading packages, etc.)
-- Bert
On Sun, Oct 22, 2023 at 1:36 PM varin sacha via R-help
<r-help using r-project.org> wrote:
>
> Dear R-experts,
>
> Here below my R code with an error message. Can somebody help me to fix this error?
> Really appreciate your help.
>
> Best,
>
> ############################################################
> # MSE CROSSVALIDATION Lasso regression
>
> library(glmnet)
>
>
> x1=c(34,35,12,13,15,37,65,45,47,67,87,45,46,39,87,98,67,51,10,30,65,34,57,68,98,86,45,65,34,78,98,123,202,231,154,21,34,26,56,78,99,83,46,58,91)
> x2=c(1,3,2,4,5,6,7,3,8,9,10,11,12,1,3,4,2,3,4,5,4,6,8,7,9,4,3,6,7,9,8,4,7,6,1,3,2,5,6,8,7,1,1,2,9)
> y=c(2,6,5,4,6,7,8,10,11,2,3,1,3,5,4,6,5,3.4,5.6,-2.4,-5.4,5,3,6,5,-3,-5,3,2,-1,-8,5,8,6,9,4,5,-3,-7,-9,-9,8,7,1,2)
> T=data.frame(y,x1,x2)
>
> z=matrix(c(x1,x2), ncol=2)
> cv_model=glmnet(z,y,alpha=1)
> best_lambda=cv_model$lambda.min
> best_lambda
>
>
> # Create a list to store the results
> lst<-list()
>
> # This statement does the repetitions (looping)
> for(i in 1 :1000) {
>
> n=45
>
> p=0.667
>
> sam=sample(1 :n,floor(p*n),replace=FALSE)
>
> Training =T [sam,]
> Testing = T [-sam,]
>
> test1=matrix(c(Testing$x1,Testing$x2),ncol=2)
>
> predictLasso=predict(cv_model, newx=test1)
>
>
> ypred=predict(predictLasso,newdata=test1)
> y=T[-sam,]$y
>
> MSE = mean((y-ypred)^2)
> MSE
> lst[i]<-MSE
> }
> mean(unlist(lst))
> ##################################################################
>
>
>
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list