[R] Selecting a minimum value of an attribute associated with point values neighboring a given point and assigning it as a new attribute
Bert Gunter
bgunter@4567 @end|ng |rom gm@||@com
Sat Nov 5 16:08:31 CET 2022
Probably better posted on R-sig-geo.
-- Bert
On Sat, Nov 5, 2022 at 12:36 AM Duhl, Tiffany R. <Tiffany.Duhl using tufts.edu>
wrote:
> Hello,
>
> I have sets of spatial points with LAT, LON coords (unprojected, WGS84
> datum) and several value attributes associated with each point, from
> numerous csv files (with an average of 6,000-9,000 points in each file) as
> shown in the following example:
>
> data<- read.csv("R_find_pts_testdata.csv")
>
> > data
> ID Date Time LAT LON Conc
> Leg.Speed CO2 H2O BC61 Hr Min Sec
> 1 76 4/19/2021 21:25:38 42.40066 -70.98802 99300 0.0 mph 428.39 9.57
> 578 21 25 38
> 2 77 4/19/2021 21:25:39 42.40066 -70.98802 96730 0.0 mph 428.04 9.57
> 617 21 25 39
> 3 79 4/19/2021 21:25:41 42.40066 -70.98802 98800 0.2 mph 427.10 9.57
> 1027 21 25 41
> 4 80 4/19/2021 21:25:42 42.40066 -70.98802 96510 2 mph 427.99 9.58
> 1381 21 25 42
> 5 81 4/19/2021 21:25:43 42.40067 -70.98801 95540 3 mph 427.99 9.58
> 1271 21 25 43
> 6 82 4/19/2021 21:25:44 42.40068 -70.98799 94720 4 mph 427.20 9.57
> 910 21 25 44
> 7 83 4/19/2021 21:25:45 42.40069 -70.98797 94040 5 mph 427.18 9.57
> 652 21 25 45
> 8 84 4/19/2021 21:25:46 42.40072 -70.98795 95710 7 mph 427.07 9.57
> 943 21 25 46
> 9 85 4/19/2021 21:25:47 42.40074 -70.98792 96200 8 mph 427.44 9.56
> 650 21 25 47
> 10 86 4/19/2021 21:25:48 42.40078 -70.98789 93750 10 mph 428.76 9.57
> 761 21 25 48
> 11 87 4/19/2021 21:25:49 42.40081 -70.98785 93360 11 mph 429.25 9.56
> 1158 21 25 49
> 12 88 4/19/2021 21:25:50 42.40084 -70.98781 94340 12 mph 429.56 9.57
> 107 21 25 50
> 13 89 4/19/2021 21:25:51 42.40087 -70.98775 92780 12 mph 428.62 9.56
> 720 21 25 51
>
>
> What I want to do is, for each point, identify all points within 50m of
> that point, find the minimum value of the "Conc" attribute of each nearby
> set of points (including the original point) and then create a new variable
> ("Conc_min") and assign this minimum value to a new variable added to
> "data".
>
> So far, I have the following code:
>
> library(spdep)
> library(sf)
>
> setwd("C:\\mydirectory\\")
> data<- read.csv("R_find_pts_testdata.csv")
>
> #make sure the data is a data frame
> pts <- data.frame(data)
>
> #create spatial data frame and define projection
> pts_coords <- cbind(pts$LON, pts$LAT)
> data_pts <- SpatialPointsDataFrame(coords= pts_coords,
> data=pts, proj4string = CRS("+proj=longlat +datum=WGS84"))
>
> #Re-project to WGS 84 / UTM zone 18N, so the analysis is in units of m
> ptsUTM <- sf::st_as_sf(data_pts, coords = c("LAT", "LON"), remove = F)%>%
> st_transform(32618)
>
> #create 50 m buffer around each point then intersect with points and
> finally find neighbors within the buffers
> pts_buf <- sf::st_buffer(ptsUTM, 50)
> coords <- sf::st_coordinates(ptsUTM)
> int <- sf::st_intersects(pts_buf, ptsUTM)
> x <- spdep::dnearneigh(coords, 0, 50)
>
> Now at this point, I'm not sure what to either the "int" (a sgbp list) or
> "x" (nb object) objects (or even if I need them both)
>
> > int
> Sparse geometry binary predicate list of length 974, where the predicate
> was `intersects'
> first 10 elements:
> 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
> 2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
> 3: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
> 4: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
> 5: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
> 6: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
> 7: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
> 8: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
> 9: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
>
> > x
> Neighbour list object:
> Number of regions: 974
> Number of nonzero links: 34802
> Percentage nonzero weights: 3.668481
> Average number of links: 35.73101
>
> One thought is that maybe I don't need the dnearneigh function and can
> instead convert "int" into a dataframe and somehow merge or associate
> (perhaps with an inner join) the ID fields of the buffered and intersecting
> points and then compute the minimum value of "Conc" grouping by ID:
>
> > as.data.frame(int)
> row.id col.id
> 1 1 1
> 2 1 2
> 3 1 3
> 4 1 4
> 5 1 5
> 6 1 6
> 7 1 7
> 8 1 8
> 9 1 9
> 10 1 10
> 11 1 11
> 12 1 12
> 13 1 13
> 14 1 14
> 15 1 15
> 16 1 16
> 17 1 17
> 18 1 18
> 19 2 1
> 20 2 2
> 21 2 3
> 22 2 4
> 23 2 5
> 24 2 6
> 25 2 7
> 26 2 8
> 27 2 9
> 28 2 10
>
>
> So in the above example I'd like to take the minimum of "Conc" among the
> col.id points grouped with row.id 1 (i.e., col.ids 1-18) and assign the
> minimum value of this group as a new variable in data (Data$Conc_min), and
> do the same for row.id 2 and all the rest of the rows.
>
> I'm just not sure how to do this and I appreciate any help folks might
> have on this matter!
>
> Many thanks,
> -Tiffany
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
[[alternative HTML version deleted]]
More information about the R-help
mailing list