[R] R: sim1000G
Berina Zametica UNI
@0bez@me @end|ng |rom un|-bonn@de
Thu Oct 29 12:36:05 CET 2020
Hi,
I am using the sim1000G R package to simulate data for case/control study.
I can not figure out how to manipulate this code to be able to generate 10%
or 50% causal SNPs in R.
This is whole code provided as example on GitHub:
library(sim1000G)
vcf_file = "region-chr4-357-ANK2.vcf.gz" #nvariants = 442, ss=1000
vcf = readVCF( vcf_file, maxNumberOfVariants = 442 ,min_maf =
0.0005,max_maf = 0.01) #lowest MAF
dim( vcf$gt1 ) #rows represent number of variants, columns represent
number of individuals
## Download and use full chromosome genetic map
downloadGeneticMap(4)
readGeneticMap(4)
sample.size=3000
startSimulation(vcf, totalNumberOfIndividuals = sample.size)
data_sim = function(seed.num){
SIM$reset()
id = generateUnrelatedIndividuals(sample.size)
gt = retrieveGenotypes(id)
freq = apply(gt,2,sum)/(2*nrow(gt))
causal = sample(setdiff(1:ncol(gt),which(freq==0)),45)
beta.sign = rep(1,45)
c.value = 0.402
beta.abs = c.value*abs(log10(freq[causal]))
beta.val = beta.sign*beta.abs
x.bar = apply(gt[,causal],2,mean)
x.bar = as.matrix(x.bar)
beta.val = t(as.matrix(beta.val))
#disease prvalance = 1%
#beta0 = -log(99)-beta.val %*% x.bar
#disease prvalance = 1.5%
beta0 = 0-beta.val %*% x.bar
eta = beta.val %*% t(gt[,causal])
eta = as.vector(eta) + rep(beta0,nrow(gt))
prob = exp(eta)/(1+exp(eta))
genocase = rep(NA, sample.size)
set.seed(seed.num)
for(i in 1:sample.size){
genocase[i] = rbinom(1, 1, prob[i])
}
case.idx = sample(which(genocase==1),1000)
control.idx = sample(which(genocase==0),1000)
return(rbind(gt[case.idx,],gt[control.idx,]))
}
How I can modify code in a way that it will simulate:
50 % of causal SNPs** ( exmp. 24 causal variants and 24 non causal SNPs)
10 % of causal SNP (exmpl. 5 causal and 43 non causal SNPs)
Thanks a lot for any suggestion.
[[alternative HTML version deleted]]
More information about the R-help
mailing list