[R] analyzing results from Tuesday's US elections

Abby Spurdle @purd|e@@ @end|ng |rom gm@||@com
Tue Nov 10 01:45:36 CET 2020


RESENT
INITIAL EMAIL, TOO BIG
ATTACHMENTS REPLACED WITH LINKS

I created a dataset, linked.
Had to manually copy and paste from the NY Times website.

> head (data, 3)
    STATE   EQCOUNTY RMARGIN_2016 RMARGIN_2020 NVOTERS_2020 SUB_STATEVAL_2016
1 Alabama     Mobile         13.3           12       181783                 0
2 Alabama     Dallas        -37.5          -38        17861                 0
3 Alabama Tuscaloosa         19.3           15        89760                 0

> tail (data, 3)
       STATE EQCOUNTY RMARGIN_2016 RMARGIN_2020 NVOTERS_2020 SUB_STATEVAL_2016
4248 Wyoming    Uinta         58.5           63         9400                 0
4249 Wyoming Sublette         63.0           62         4970                 0
4250 Wyoming  Johnson         64.3           61         4914                 0

> head (data [data [,1] == "Alaska",], 3)
    STATE EQCOUNTY RMARGIN_2016 RMARGIN_2020 NVOTERS_2020 SUB_STATEVAL_2016
68 Alaska    ED 40         14.7        -24.0           82                 1
69 Alaska    ED 37         14.7         -1.7          173                 1
70 Alaska    ED 38         14.7         -0.4          249                 1

EQCounty, is the County or Equivalent.
Several states, D.C., Alaska, Connecticut, Maine, Massachusetts, Rhode
Island and Vermont are different.
RMargin(s) are the republican percentages minus the democrate
percentages, as 2 or 3 digit numbers between 0 and 100.
The last column is 0s or 1s, with 1s for Alaska, Connecticut, Maine,
Massachusetts, Rhode Island and Vermont, where I didn't have the 2016
margins, so the 2016 margins have been replaced with state-levels
values.

Then I scaled the margins, based on the number of voters.
i.e.
wx2016 <- 1000 * x2016 * nv / max.nv
(Where x2016 is equal to RMARGIN_2020, and nv is equal to NVOTERS_2020).

There may be a much better way.

And came up the following plots (linked) and output (follows):

---INPUT---
PATH = "<PATH TO FILE>"
data = read.csv (PATH, header=TRUE)

#raw data
x2016 <- as.numeric (data$RMARGIN_2016)
x2020 <- as.numeric (data$RMARGIN_2020)
nv <- as.numeric (data$NVOTERS_2020)
subs <- as.logical (data$SUB_STATEVAL)

#computed data
max.nv <- max (nv)
wx2016 <- 1000 * x2016 * nv / max.nv
wx2020 <- 1000 * x2020 * nv / max.nv
diffs <- wx2020 - wx2016

OFFSET <- 500
p0 <- par (mfrow = c (2, 2) )

#plot 1
plot (wx2016, wx2020,
main="All Votes\n(By County, or Equivalent)",
xlab="Scaled Republican Margin, 2016", ylab="Scaled Republican Margin, 2020")
abline (h=0, v=0, lty=2)

#plot 2
OFFSET <- 200
plot (wx2016, wx2020,
xlim = c (-OFFSET, OFFSET), ylim = c (-OFFSET, OFFSET),
main="All Votes\n(Zoomed In)",
xlab="Scaled Republican Margin, 2016", ylab="Scaled Republican Margin, 2020")
abline (h=0, v=0, lty=2)

OFFSET <- 1000

#plot 3
J1 <- order (diffs, decreasing=TRUE)[1:400]
plot (wx2016 [J1], wx2020 [J1],
xlim = c (-OFFSET, OFFSET), ylim = c (-OFFSET, OFFSET),
main="400 Biggest Shifts Towards Republican",
xlab="Scaled Republican Margin, 2016", ylab="Scaled Republican Margin, 2020")
abline (h=0, v=0, lty=2)
abline (a=0, b=1, lty=2)

#plot 4
J2 <- order (diffs)[1:400]
plot (wx2016 [J2], wx2020 [J2],
xlim = c (-OFFSET, OFFSET), ylim = c (-OFFSET, OFFSET),
main="400 Biggest Shifts Towards Democrat",
xlab="Scaled Republican Margin, 2016", ylab="Scaled Republican Margin, 2020")
abline (h=0, v=0, lty=2)
abline (a=0, b=1, lty=2)

par (p0)

#most democrat
I = order (wx2020)[1:30]
cbind (data [I,], scaled.dem.vote = -1 * wx2020 [I])

#biggest move toward democrat
head (cbind (data [J2,], diffs = diffs [J2]), 30)

---OUTPUT---
#most democrat
> cbind (data [I,], scaled.dem.vote = -1 * wx2020 [I])
              STATE        EQCOUNTY RMARGIN_2016 RMARGIN_2020
NVOTERS_2020 SUB_STATEVAL_2016 scaled.dem.vote
229      California     Los Angeles        -49.3          -44
3674850                 0       44000.000
769        Illinois            Cook        -53.1          -47
1897721                 0       24271.164
4073     Washington            King        -48.8          -53
1188152                 0       17135.953
3092   Pennsylvania    Philadelphia        -67.0          -63
701647                 0       12028.725
215      California         Alameda        -63.5          -64
625710                 0       10897.163
227      California     Santa Clara        -52.1          -49
726186                 0        9682.875
238      California       San Diego        -19.7          -23
1546144                 0        9676.942
2683       New York        Brooklyn        -62.0          -49
693937                 0        9252.871
2162      Minnesota        Hennepin        -34.9          -43
753716                 0        8819.350
2074       Michigan           Wayne        -37.1          -37
863382                 0        8692.908
2673       New York       Manhattan        -76.9          -70
446861                 0        8511.986
221      California   San Francisco        -75.2          -73
413642                 0        8216.898
3495          Texas          Dallas        -26.1          -32
920772                 0        8017.934
1741       Maryland Prince George's        -79.7          -80
365857                 0        7964.559
510         Florida         Broward        -34.9          -30
959418                 0        7832.303
3057         Oregon       Multnomah        -56.3          -61
458395                 0        7609.044
3563          Texas          Travis        -38.6          -45
605034                 0        7408.882
565         Georgia          DeKalb        -62.9          -67
369341                 0        6733.839
3942       Virginia         Fairfax        -35.8          -42
578931                 0        6616.624
492            D.C.            D.C.        -86.4          -87
279152                 0        6608.766
562         Georgia          Fulton        -40.9          -46
522050                 0        6534.770
230      California    Contra Costa        -43.0          -48
498340                 0        6509.196
2674       New York          Queens        -53.6          -39
597928                 0        6345.617
257        Colorado          Denver        -54.8          -64
350606                 0        6106.041
2677       New York           Bronx        -79.1          -66
329638                 0        5920.271
3530          Texas          Harris        -12.3          -13
1633671                 0        5779.208
1718       Maryland      Montgomery        -55.4          -57
369405                 0        5729.781
2888           Ohio        Cuyahoga        -35.2          -34
605268                 0        5599.987
2745 North Carolina     Mecklenburg        -29.4          -35
565980                 0        5390.506
2894           Ohio        Franklin        -25.8          -31
606022                 0        5112.231

#biggest move toward democrat
> head (cbind (data [J2,], diffs = diffs [J2]), 30)
              STATE         EQCOUNTY RMARGIN_2016 RMARGIN_2020
NVOTERS_2020 SUB_STATEVAL_2016      diffs
1751  Massachusetts           Boston        -26.8       -67.00
273133                 1 -2987.8625
113         Arizona         Maricopa          2.8        -2.00
2046295                 0 -2672.8209
3531          Texas          Tarrant          8.6        -0.16
830104                 0 -1978.7776
2162      Minnesota         Hennepin        -34.9       -43.00
753716                 0 -1661.3194
3564          Texas           Collin         16.7         5.00
486917                 0 -1550.2480
3495          Texas           Dallas        -26.1       -32.00
920772                 0 -1478.3065
238      California        San Diego        -19.7       -23.00
1546144                 0 -1388.4309
563         Georgia         Gwinnett         -5.8       -18.00
413166                 0 -1371.6547
3565          Texas           Denton         20.0         8.00
416610                 0 -1360.4147
4073     Washington             King        -48.8       -53.00
1188152                 0 -1357.9434
564         Georgia             Cobb         -2.2       -14.00
393340                 0 -1263.0208
2075       Michigan          Oakland         -8.1       -14.00
778418                 0 -1249.7561
291        Colorado        Jefferson         -6.9       -19.00
376430                 0 -1239.4528
292        Colorado          El Paso         22.3        11.00
375058                 0 -1153.2866
2321       Missouri St. Louis County        -16.2       -24.00
528107                 0 -1120.9259
3563          Texas           Travis        -38.6       -45.00
605034                 0 -1053.7077
277        Colorado         Arapahoe        -14.1       -25.00
346740                 0 -1028.4681
2744 North Carolina             Wake        -20.2       -26.00
624049                 0  -984.9339
3942       Virginia          Fairfax        -35.8       -42.00
578931                 0  -976.7398
1116         Kansas          Johnson          2.6        -8.00
338343                 0  -975.9407
3562          Texas            Bexar        -13.4       -18.00
757667                 0  -948.4110
2077       Michigan             Kent          3.1        -6.00
359915                 0  -891.2545
257        Colorado           Denver        -54.8       -64.00
350606                 0  -877.7434
110         Arizona             Pima        -13.6       -20.00
501058                 0  -872.6264
2625     New Jersey         Monmouth          9.3        -1.60
292654                 0  -868.0432
2745 North Carolina      Mecklenburg        -29.4       -35.00
565980                 0  -862.4809
3567          Texas       Williamson          9.7        -1.30
287696                 0  -861.1660
2894           Ohio         Franklin        -25.8       -31.00
606022                 0  -857.5355
203      California        Riverside         -5.4       -11.00
558759                 0  -851.4770
3966       Virginia   Virginia Beach          3.5        -8.00
253477                 0  -793.2257

DISCLAIMER:\ I can not guarantee the accuracy of this da...{{dropped:15}}



More information about the R-help mailing list