[R] Simulations study not working entirely...

varin sacha v@r|n@@ch@ @end|ng |rom y@hoo@|r
Mon Oct 21 21:13:55 CEST 2019


 Dear Wang,

Really appreciated but I have tried dependencies=TRUE and it still does not work. 
Is it because my R version is 3.6.1 ? sessionInfo() at the end of the message 

install.packages( "robustbase",dependencies=TRUE )
install.packages( "MASS" ,dependencies=TRUE )
install.packages( "quantreg" ,dependencies=TRUE )
install.packages( "RobPer",dependencies=TRUE  )
install.packages("devtools",dependencies=TRUE )  install_github("kloke/hbrfit",dependencies=TRUE) install.packages('http://www.stat.wmich.edu/mckean/Stat666/Pkgs/npsmReg2_0.1.1.tar.gz',dependencies=TRUE ) 
install.packages( "RobStatTM",dependencies=TRUE  )

library(robustbase)
library(MASS)
library(quantreg)
library(RobPer)
library(hbrfit)
library(RobStatTM)

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
Random number generation: 
RNG:     Mersenne-Twister  
Normal:  Inversion  
Sample:  Rounding  
locale:[1] fr_CH.UTF-8/fr_CH.UTF-8/fr_CH.UTF-8/C/fr_CH.UTF-8/fr_CH.UTF-8
attached base packages:[1] stats     graphics  grDevices utils     datasets  methods   base     
loaded via a namespace (and not attached):[1] compiler_3.6.1







Le lundi 21 octobre 2019 à 20:12:02 UTC+2, Wang Jiefei <szwjf08 using gmail.com> a écrit : 





Hi,

After I install all dependencies your example seems fine

```
> MSE_fastMM
[1] 2.629064e-05
> 
> MSE_Huber
[1] 1.826184e-05
> 
> MSE_Tukey
[1] 2.622499e-05
> 
> MSE_L1
[1] 1.044155e-05
> 
> MSE_fastTau
[1] NaN
> 
> MSE_HBR
[1] 1.60821e-05
> 
> MSE_DCML
[1] 9.519007e-06
> 
> sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252  LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] splines   stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] hbrfit_0.02       Rfit_0.23.0       RobStatTM_1.0.1   fit.models_0.5-14
 [5] RobPer_1.2.2      rgenoud_5.8-3.0   BB_2019.10-1      quantreg_5.51    
 [9] SparseM_1.77      MASS_7.3-51.4     robustbase_0.93-5
```

There is no error or warning, except that  MSE_fastTau is an NaN. What problem are you looking for?

Best,
Jiefei

On Mon, Oct 21, 2019 at 12:41 PM varin sacha via R-help <r-help using r-project.org> wrote:
> Dear R-Experts,
> 
> Here below my reproducible example working but not entirely (working). What I understand is that there is a problem of libraries library(hbrfit) and ... ? How can I make it work entirely, many thanks for your precious help.
> 
> ########SIMULATION STUDY 3 variables with 10% outliers n=2000
> install.packages( "robustbase" )
> install.packages( "MASS" )
> install.packages( "quantreg" )
> install.packages( "RobPer" )
> install.packages("devtools")  library("devtools") install_github("kloke/hbrfit") install.packages('http://www.stat.wmich.edu/mckean/Stat666/Pkgs/npsmReg2_0.1.1.tar.gz') 
> install.packages( "RobStatTM" )
> 
> 
> library(robustbase)
> library(MASS)
> library(quantreg)
> library(RobPer)
> library(hbrfit)
> 
> library(RobStatTM)
> 
> n<-2000
> 
> x<-runif(n, 0, 5)
> 
> z <- rnorm(n, 2, 3)
> 
> a <- runif(n, 0, 5)
> 
> y_model<- 0.1*x - 0.5 * z - a + 10
> 
> y_obs <- y_model +c( rnorm(n*0.9, 0, 0.1), rnorm(n*0.1, 0, 0.5) )
> 
> 
> fastMM <- lmrob( y_obs ~ x+z+a)
> 
> Huber <- rlm( y_obs ~ x+z+a)
> 
> Tukey <- rlm( y_obs ~ x+z+a, psi = psi.bisquare )
> 
> L1 <- rq( y_obs ~ x+z+a, tau = 0.5 )
> 
> fastTau <- FastTau(model.matrix(~newdata$x+newdata$z+newdata$a),newdata$y_obs)
> 
> HBR<-hbrfit(y_obs ~ x+z+a)
> 
> DCML <-lmrobdetDCML(y_obs ~ x+z+a)
> 
>  
> MSE_fastMM<-mean((fastMM$fitted.values - y_model)^2)
> 
> MSE_Huber<-mean((Huber$fitted.values - y_model)^2)
> 
> MSE_Tukey<-mean((Tukey$fitted.values - y_model)^2)
> 
> MSE_L1<-mean((L1$fitted.values - y_model)^2)
> 
> MSE_fastTau<-mean((fastTau$fitted.values - y_model)^2)
> 
> MSE_HBR<-mean((HBR$fitted.values - y_model)^2)
> 
> MSE_DCML<-mean((DCML$fitted.values - y_model)^2)
> 
> 
> MSE_fastMM
> 
> MSE_Huber
> 
> MSE_Tukey
> 
> MSE_L1
> 
> MSE_fastTau
> 
> MSE_HBR
> 
> MSE_DCML
> 
> ###############
> 
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
> 



More information about the R-help mailing list