[R] Time Series and Auto.arima
David Winsemius
dwinsemius at comcast.net
Fri Jan 29 23:16:27 CET 2016
> On Jan 29, 2016, at 12:59 PM, Lorenzo Isella <lorenzo.isella at gmail.com> wrote:
>
> Dear All,
> I am puzzled and probably I am misunderstanding something.
> Please consider the snippet at the end of the email.
> We see a time series that has clearly some pattern (essentially, it is
> an account where a salary is regularly paid followed by some
> expenses).
> However the output of the auto.arima from the forecast function does
> not seem to make any sense (at least to me).
> I wonder if the problem is the fact that the time series is not
> defined at regular intervals.
> Any suggestions and alternative ways to fit it (e.g.: sarima from the astsa
> package to account for the seasonality?) are really welcome.
> Many thanks
>
> Lorenzo
>
>
>
> ##############################################
> library(forecast)
>
> tt<-structure(c(1494.5, 1367.57, 1357.57, 1222.23, 1124.02, 1011.64,
> 4575.64, 3201.87, 3050.04, 2173.38, 1967.88, 1838.55, 1666.05,
> 1656.05, 1524.96, 835.96, 775.36, 592.36, 494.15, 4058.15, 2624.36,
> 2448.47, 1598.47, 1398.47, 1264.14, 1165.88, 1053.67, 941.36,
> 821.36, 471.36, 373.15, 259.91, 3808.91, 2262.26, 1940.39, 1011.39,
> 800.81, 790.81), index = structure(c(16563L, 16565L, 16570L,
> 16572L, 16577L, 16579L, 16584L, 16585L, 16586L, 16587L, 16588L,
> 16589L, 16590L, 16592L, 16593L, 16599L, 16606L, 16607L, 16608L,
> 16612L, 16613L, 16614L, 16617L, 16618L, 16619L, 16620L, 16621L,
> 16628L, 16633L, 16635L, 16638L, 16642L, 16647L, 16648L, 16649L,
> 16650L, 16651L, 16654L), class = "Date"), class = "zoo")
>
> plot(tt)
>
library(forecast)
> fit<-auto.arima(tt)
>
> ###########################################
If , after runing plot(tt), you then run:
fitted(fit)
Time Series:
Start = 16563
End = 16654
Frequency = 1
[1] 1448.8211 NA 1444.8612 NA NA NA NA
[8] 1398.7752 NA 1359.0350 NA NA NA NA
[15] 1309.1398 NA 1219.7420 NA NA NA NA
[22] 2302.8903 3708.1762 2713.0349 2603.0512 1968.0100 1819.1484 1725.4634
[29] NA 1572.6179 1593.2628 NA NA NA NA
[36] NA 1258.3403 NA NA NA NA NA
[43] NA 1184.9656 955.3023 822.7394 NA NA NA
[50] 1987.7634 3333.3131 2294.6941 NA NA 1760.6351 1551.5526
[57] 1406.6751 1309.3682 1238.1899 NA NA NA NA
[64] NA NA 1251.6898 NA NA NA NA
[71] 1179.9970 NA 988.3885 NA NA 888.4533 NA
[78] NA NA 889.4017 NA NA NA NA
[85] 1970.0911 3152.7668 2032.3935 1799.2350 1126.2794 NA NA
[92] 1088.1525
Using that vector:
lines(seq(16563 ,16654 ),fitted(fit), col="red", lwd=3)
You can see that the fitted values are capturing quite a bit of the variation.
I'm not a regular user of pkg:forecast, so there may be more refined methods of extracting information than using `fitted`.
--
David Winsemius
Alameda, CA, USA
More information about the R-help
mailing list