[R] Partition of sums of squares (ANOVA)
Bert Gunter
gunter.berton at gene.com
Tue Jul 22 20:08:16 CEST 2014
Wrong list!
Try stats.stackexchange.com for statistics questions. This list is
about R programming related issues.
Also, note that HTML does not work and should not be used here.
Cheers,
Bert
Bert Gunter
Genentech Nonclinical Biostatistics
(650) 467-7374
"Data is not information. Information is not knowledge. And knowledge
is certainly not wisdom."
Clifford Stoll
On Tue, Jul 22, 2014 at 10:53 AM, Marino David <davidmarino838 at gmail.com> wrote:
> Hi all r-mailling listers:
>
> Can anyone explain the theory (or the formula) about computing Sum Sq
> (color highligh below) related to regression items? The link of Wikipedia (
> http://en.wikipedia.org/wiki/Partition_of_sums_of_squares) gives an
> introduction on how to calculate the total, model, and regression sum of
> squares. Is it similar to the Sum Sq computation? Is the regression sum of
> squares equal to (0.000437+ 0.002545+ 0.060984+ 0.062330+ 0.060480)?
>
> Any suggestion will be greatly appreciated.
>
> Thank you!
>
> David
>
> TraingData<-data.frame(
> x1=c(3.532,2.868,2.868,3.532,2.868,2.536,3.864),
> x2=c(1.992,1.992,1.328,1.328,1.328,1.66,1.66),
> y=c(9.040330254,8.900894412,8.701929163,9.057944749,8.701929163,8.74317832,9.10859913)
> )
> lm.sol<-lm(y~1+x1+x2+I(x1^2)+I(x2^2)+I(x1*x2),data=TraingData)
> anova(lm.sol)
>
> Analysis of Variance Table
>
> Response: y
> Df *Sum Sq* Mean Sq F value Pr(>F)
> x1 1 0.000437 0.000437 0.1055 0.8001
> x2 1 0.002545 0.002545 0.6141 0.5768
> I(x1^2) 1 0.060984 0.060984 14.7162 0.1623
> I(x2^2) 1 0.062330 0.062330 15.0409 0.1607
> I(x1 * x2) 1 0.060480 0.060480 14.5945 0.1630
> Residuals 1 0.004144 0.004144
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list