[R] Troubleshooting underidentification issues in structural equation modelling (SEM)

John Fox jfox at mcmaster.ca
Fri Feb 15 14:12:48 CET 2013


Dear Ruijie and Bert,

I agree with Bert that it's very difficult to do effective statistical consulting long-distance by email. I think that you'd be much better served by getting competent statistical help locally, as I've already suggested. 

On the other hand, I'm surprised that your reading didn't suggest that a CFA model with latent variables that have just one observed indicator each, and in which both the factor loadings and error variances for these variables are free parameters, is underidentified. If you haven't already read it, I recommend Bollen's Structural Equations with Latent Variables (Wiley, 1989), despite its age.

Best,
 John

On Fri, 15 Feb 2013 02:11:01 -0800
 Bert Gunter <gunter.berton at gene.com> wrote:
> These are statistical, not R issues, so please do not post further
> here. You are clearly out of your depth statistically. You need to get
> local statistical help, or you can try posting on a statistical list
> like stats.stackexchange.com if you care to take advice from unknown
> sources who don't understand the details of your situation.
> 
> -- Bert
> 
> On Fri, Feb 15, 2013 at 1:11 AM, Ruijie <breakaway8 at gmail.com> wrote:
> > Thanks Prof Fox for your guidance. My purpose in fitting this model is to
> > contrast it with another model that I am proposing which I believe will be
> > a better fit.
> >
> > On the point of some of the items being close to invariant, I had a close
> > look at my data and indeed that is the case I am aware of it. However, I am
> > not sure what to do with these items. Do I remove them? If I do, what
> > threshold of variance do I set for removal? How do I decide on that
> > threshold?
> >
> > I've combed a number of textbooks for answers but sadly have not found
> > much. Hope you could offer some advice, thanks!
> >
> > Regards,
> > Ruijie (RJ)
> >
> > --------
> > He who has a why can endure any how.
> >
> > ~ Friedrich Nietzsche
> >
> >
> > On 10 February 2013 00:38, John Fox <jfox at mcmaster.ca> wrote:
> >
> >> Dear Ruijie,
> >>
> >> Your model is underidentified by virtue of two of the factors having only
> >> one observed indicator each. No SEM software can magically estimate this
> >> model as it stands. Beyond that, I won't comment on the wisdom of what
> >> you're doing, such as computing covariances between ordinal variables --
> >> but
> >> see what I discovered below.
> >>
> >> Removing these two variables and the associated factors produces the
> >> following model:
> >>
> >> --------- snip ------------
> >>
> >> > model <- cfa(reference.indicators=FALSE)
> >> 1: F01: I01, I02, I03
> >> 2: F02: I04, I05, I06, I07, I08, I09, I10, I11, I12, I13
> >> 3: F03: I14, I15, I16, I17, I18, I19, I20, I21, I22, I23, I24, I25, I26
> >> 4: F04: I27, I28, I29, I30, I31, I32, I33, I34
> >> 5: F05: I35, I36, I37, I38, I39, I40, I41, I42, I43
> >> 6: F07: I46, I47, I48, I49, I50, I51
> >> 7: F08: I54, I55, I56, I57, I58, I59, I60, I61, I62, I63, I64
> >> 8: F09: I65, I66, I67
> >> 9: F11: I69, I70, I71
> >> 10:
> >> Read 9 items
> >> NOTE: adding 66 variances to the model
> >> >
> >> > cfa.output <- sem(model, cov.mat, N = 900)
> >>
> >> --------- snip ------------
> >>
> >> sem() ran out of iterations, but the summary output is revealing:
> >>
> >> --------- snip ------------
> >>
> >> > summary(cfa.output)
> >>
> >>  Model Chisquare =  5677.1   Df =  2043 Pr(>Chisq) = 0
> >>  AIC =  6013.1
> >>  BIC =  -8220.193
> >>
> >>  Normalized Residuals
> >>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
> >> -3.9910 -0.5887 -0.1486  0.2588  0.8092 17.2900
> >>
> >>  R-square for Endogenous Variables
> >>     I01     I02     I03     I04     I05     I06     I07     I08     I09
> >> I10
> >>  0.0953  0.1263  0.0000  0.1131  0.4039  0.2519  0.1168  0.0468  0.0005
> >> 0.0059
> >>     I11     I12     I13     I14     I15     I16     I17     I18     I19
> >> I20
> >>  0.0479  0.0228  0.1150  0.2813  0.0001  0.0388  0.2106  0.0001  0.0913
> >> 0.0063
> >>     I21     I22     I23     I24     I25     I26     I27     I28     I29
> >> I30
> >>  0.0041  0.0077  0.0022  0.0000  0.0299  0.0067  0.0019  0.0011  0.0010
> >> 0.0000
> >>     I31     I32     I33     I34     I35     I36     I37     I38     I39
> >> I40
> >>  0.0005  0.0117  0.0270  0.0001  0.0084  0.0001  0.0256  0.4969  0.0613
> >> 0.0515
> >>     I41     I42     I43     I46     I47     I48     I49     I50     I51
> >> I54
> >>  0.0005  0.0052  0.0307  0.0003  0.1131  0.0014  0.0000  0.1276  0.9728
> >> 0.0520
> >>     I55     I56     I57     I58     I59     I60     I61     I62     I63
> >> I64
> >>  0.2930  0.0127  0.0543  0.0500  0.0378  0.0001  0.3048  0.0002  0.0304
> >> 0.0001
> >>     I65     I66     I67     I69     I70     I71
> >> 56.7264  0.0000  0.0002  0.2220  0.2342  0.2240
> >>
> >>  Parameter Estimates
> >>              Estimate      Std Error    z value      Pr(>|z|)
> >>
> >> lam[I01:F01]  3.023074e-02 5.133785e-03  5.888586224  3.895133e-09 I01 <---
> >> F01
> >> lam[I02:F01]  3.283192e-02 5.291069e-03  6.205157975  5.464199e-10 I02 <---
> >> F01
> >> lam[I03:F01]  1.123398e-04 2.695713e-03  0.041673509  9.667590e-01 I03 <---
> >> F01
> >> lam[I04:F02]  1.365329e-01 1.555023e-02  8.780124358  1.632940e-18 I04 <---
> >> F02
> >> lam[I05:F02]  9.525580e-02 5.517838e-03 17.263245517  8.896692e-67 I05 <---
> >> F02
> >> lam[I06:F02]  1.720147e-01 1.277593e-02 13.463962882  2.548717e-41 I06 <---
> >> F02
> >> lam[I07:F02]  3.164280e-02 3.543421e-03  8.930015663  4.259485e-19 I07 <---
> >> F02
> >> lam[I08:F02]  5.685988e-02 1.021854e-02  5.564386503  2.630763e-08 I08 <---
> >> F02
> >> lam[I09:F02]  1.234516e-03 2.228298e-03  0.554017268  5.795670e-01 I09 <---
> >> F02
> >> lam[I10:F02]  1.656005e-02 8.458411e-03  1.957820181  5.025112e-02 I10 <---
> >> F02
> >> lam[I11:F02]  8.785114e-02 1.560646e-02  5.629151062  1.810987e-08 I11 <---
> >> F02
> >> lam[I12:F02]  3.022114e-02 7.815459e-03  3.866842129  1.102537e-04 I12 <---
> >> F02
> >> lam[I13:F02]  5.075487e-02 5.732307e-03  8.854177302  8.430329e-19 I13 <---
> >> F02
> >> lam[I14:F03]  2.587670e-01 2.308125e-02 11.211137448  3.595430e-29 I14 <---
> >> F03
> >> lam[I15:F03] -2.999816e-04 1.469667e-03 -0.204115351  8.382634e-01 I15 <---
> >> F03
> >> lam[I16:F03]  2.314973e-02 5.256310e-03  4.404179628  1.061849e-05 I16 <---
> >> F03
> >> lam[I17:F03]  9.333201e-02 9.301123e-03 10.034488472  1.075152e-23 I17 <---
> >> F03
> >> lam[I18:F03] -3.389770e-04 1.469665e-03 -0.230649144  8.175874e-01 I18 <---
> >> F03
> >> lam[I19:F03]  6.783532e-02 1.005099e-02  6.749117110  1.487475e-11 I19 <---
> >> F03
> >> lam[I20:F03]  3.916003e-02 2.208166e-02  1.773418523  7.615938e-02 I20 <---
> >> F03
> >> lam[I21:F03]  7.260062e-03 5.059696e-03  1.434881038  1.513210e-01 I21 <---
> >> F03
> >> lam[I22:F03]  4.556262e-02 2.322628e-02  1.961683814  4.979931e-02 I22 <---
> >> F03
> >> lam[I23:F03]  1.528270e-03 1.469492e-03  1.039998378  2.983407e-01 I23 <---
> >> F03
> >> lam[I24:F03] -8.635421e-04 7.794243e-03 -0.110792296  9.117811e-01 I24 <---
> >> F03
> >> lam[I25:F03]  3.625777e-02 9.391320e-03  3.860774500  1.130282e-04 I25 <---
> >> F03
> >> lam[I26:F03]  2.350350e-02 1.287924e-02  1.824913234  6.801412e-02 I26 <---
> >> F03
> >> lam[I27:F04]  8.013741e-03 7.100286e-03  1.128650332  2.590454e-01 I27 <---
> >> F04
> >> lam[I28:F04]  1.094008e-03 1.051268e-03  1.040655898  2.980353e-01 I28 <---
> >> F04
> >> lam[I29:F04]  3.712052e-03 3.647614e-03  1.017665748  3.088368e-01 I29 <---
> >> F04
> >> lam[I30:F04]  2.309796e-04 3.735193e-03  0.061838730  9.506913e-01 I30 <---
> >> F04
> >> lam[I31:F04]  9.905663e-03 1.152962e-02  0.859149344  3.902581e-01 I31 <---
> >> F04
> >> lam[I32:F04]  2.612580e-02 2.019934e-02  1.293398622  1.958732e-01 I32 <---
> >> F04
> >> lam[I33:F04]  8.299228e-02 6.192966e-02  1.340105491  1.802111e-01 I33 <---
> >> F04
> >> lam[I34:F04] -1.131056e-03 2.529220e-03 -0.447195412  6.547340e-01 I34 <---
> >> F04
> >> lam[I35:F05]  7.917586e-03 3.671643e-03  2.156414987  3.105128e-02 I35 <---
> >> F05
> >> lam[I36:F05] -1.122579e-03 6.021404e-03 -0.186431415  8.521065e-01 I36 <---
> >> F05
> >> lam[I37:F05]  5.245211e-03 1.392977e-03  3.765467592  1.662377e-04 I37 <---
> >> F05
> >> lam[I38:F05]  1.459603e-01 1.212396e-02 12.038999880  2.216262e-33 I38 <---
> >> F05
> >> lam[I39:F05]  9.091376e-02 1.563821e-02  5.813567281  6.115538e-09 I39 <---
> >> F05
> >> lam[I40:F05]  1.174920e-01 2.202669e-02  5.334074682  9.603300e-08 I40 <---
> >> F05
> >> lam[I41:F05] -6.674451e-03 1.240103e-02 -0.538217344  5.904270e-01 I41 <---
> >> F05
> >> lam[I42:F05]  2.074782e-02 1.220154e-02  1.700426338  8.905076e-02 I42 <---
> >> F05
> >> lam[I43:F05]  2.058762e-02 4.991076e-03  4.124885623  3.709190e-05 I43 <---
> >> F05
> >> lam[I46:F07] -7.270739e-03 1.477067e-02 -0.492241486  6.225486e-01 I46 <---
> >> F07
> >> lam[I47:F07]  3.294388e-02 3.596677e-03  9.159533769  5.212202e-20 I47 <---
> >> F07
> >> lam[I48:F07]  1.960841e-02 1.764661e-02  1.111171519  2.664945e-01 I48 <---
> >> F07
> >> lam[I49:F07] -3.231036e-06 1.918097e-03 -0.001684501  9.986560e-01 I49 <---
> >> F07
> >> lam[I50:F07]  3.300839e-02 3.426575e-03  9.633058172  5.797778e-22 I50 <---
> >> F07
> >> lam[I51:F07]  3.234144e-02 1.806978e-03 17.898079438  1.220591e-71 I51 <---
> >> F07
> >> lam[I54:F08]  1.003417e-01 1.711888e-02  5.861462155  4.588091e-09 I54 <---
> >> F08
> >> lam[I55:F08]  1.408049e-01 9.886797e-03 14.241707324  5.047855e-46 I55 <---
> >> F08
> >> lam[I56:F08]  4.096655e-02 1.425085e-02  2.874673321  4.044457e-03 I56 <---
> >> F08
> >> lam[I57:F08]  7.137153e-02 1.191379e-02  5.990663872  2.089862e-09 I57 <---
> >> F08
> >> lam[I58:F08]  1.206947e-01 2.100849e-02  5.745043255  9.189749e-09 I58 <---
> >> F08
> >> lam[I59:F08]  7.178104e-02 1.439758e-02  4.985632949  6.175929e-07 I59 <---
> >> F08
> >> lam[I60:F08]  2.027172e-03 6.627611e-03  0.305867676  7.597054e-01 I60 <---
> >> F08
> >> lam[I61:F08]  1.215272e-01 8.374503e-03 14.511567971  1.023539e-47 I61 <---
> >> F08
> >> lam[I62:F08]  1.072324e-03 3.404172e-03  0.315002895  7.527595e-01 I62 <---
> >> F08
> >> lam[I63:F08]  4.836428e-02 1.084696e-02  4.458785647  8.242530e-06 I63 <---
> >> F08
> >> lam[I64:F08] -7.221766e-04 2.879830e-03 -0.250770557  8.019915e-01 I64 <---
> >> F08
> >> lam[I65:F09]  3.983293e+00 9.711381e+01  0.041016748  9.672825e-01 I65 <---
> >> F09
> >> lam[I66:F09] -1.673556e-03 4.096286e-02 -0.040855450  9.674111e-01 I66 <---
> >> F09
> >> lam[I67:F09]  5.049621e-04 1.235197e-02  0.040881113  9.673907e-01 I67 <---
> >> F09
> >> lam[I69:F11]  1.586150e-01 1.373361e-02 11.549406592  7.433188e-31 I69 <---
> >> F11
> >> lam[I70:F11]  8.237619e-02 6.956861e-03 11.840999012  2.395820e-32 I70 <---
> >> F11
> >> lam[I71:F11]  9.448552e-02 8.147082e-03 11.597468367  4.244491e-31 I71 <---
> >> F11
> >> C[F01,F02]    3.728217e-02 9.597514e-02  0.388456537  6.976782e-01 F02 <-->
> >> F01
> >> C[F01,F03]    7.240582e-01 1.355959e-01  5.339824854  9.303642e-08 F03 <-->
> >> F01
> >> C[F01,F04]   -5.354253e-01 5.303413e-01 -1.009586227  3.126936e-01 F04 <-->
> >> F01
> >> C[F01,F05]    2.384885e-01 1.052432e-01  2.266070269  2.344708e-02 F05 <-->
> >> F01
> >> C[F01,F07]    1.040182e+00 1.489435e-01  6.983736644  2.874306e-12 F07 <-->
> >> F01
> >> C[F01,F08]   -1.013298e-01 1.035977e-01 -0.978107752  3.280210e-01 F08 <-->
> >> F01
> >> C[F01,F09]    1.171918e-02 2.860487e-01  0.040969189  9.673205e-01 F09 <-->
> >> F01
> >> C[F01,F11]    7.946394e-02 1.093765e-01  0.726517178  4.675218e-01 F11 <-->
> >> F01
> >> C[F02,F03]    2.272594e-01 6.201036e-02  3.664862498  2.474715e-04 F03 <-->
> >> F02
> >> C[F02,F04]    1.730434e-01 2.421846e-01  0.714510214  4.749117e-01 F04 <-->
> >> F02
> >> C[F02,F05]    5.724325e-02 5.826660e-02  0.982436740  3.258847e-01 F05 <-->
> >> F02
> >> C[F02,F07]    6.462176e-02 4.345441e-02  1.487116261  1.369841e-01 F07 <-->
> >> F02
> >> C[F02,F08]    9.751552e-01 4.152782e-02 23.481976829 6.233472e-122 F08 <-->
> >> F02
> >> C[F02,F09]   -6.044195e-04 1.578879e-02 -0.038281562  9.694632e-01 F09 <-->
> >> F02
> >> C[F02,F11]    1.026869e-01 6.243113e-02  1.644803751  1.000103e-01 F11 <-->
> >> F02
> >> C[F03,F04]    7.503546e-01 5.859127e-01  1.280659345  2.003133e-01 F04 <-->
> >> F03
> >> C[F03,F05]    2.162240e-01 6.673622e-02  3.239980149  1.195380e-03 F05 <-->
> >> F03
> >> C[F03,F07]    3.686512e-01 5.011777e-02  7.355697641  1.899325e-13 F07 <-->
> >> F03
> >> C[F03,F08]    2.308590e-01 6.677771e-02  3.457127167  5.459671e-04 F08 <-->
> >> F03
> >> C[F03,F09]    3.422314e-02 8.348605e-01  0.040992640  9.673018e-01 F09 <-->
> >> F03
> >> C[F03,F11]    2.699455e-01 7.051428e-02  3.828238253  1.290638e-04 F11 <-->
> >> F03
> >> C[F04,F05]    1.062305e+00 7.911158e-01  1.342793467  1.793389e-01 F05 <-->
> >> F04
> >> C[F04,F07]   -8.324317e-02 1.748320e-01 -0.476132285  6.339801e-01 F07 <-->
> >> F04
> >> C[F04,F08]    1.389356e-01 2.448826e-01  0.567356043  5.704723e-01 F08 <-->
> >> F04
> >> C[F04,F09]    5.856590e-02 1.429422e+00  0.040971726  9.673184e-01 F09 <-->
> >> F04
> >> C[F04,F11]    2.294948e+00 1.661805e+00  1.380997204  1.672798e-01 F11 <-->
> >> F04
> >> C[F05,F07]    2.099261e-01 4.716298e-02  4.451078015  8.544029e-06 F07 <-->
> >> F05
> >> C[F05,F08]    4.221026e-02 6.261302e-02  0.674145115  5.002191e-01 F08 <-->
> >> F05
> >> C[F05,F09]    3.165187e-02 7.721368e-01  0.040992561  9.673018e-01 F09 <-->
> >> F05
> >> C[F05,F11]    7.351754e-01 6.818771e-02 10.781639916  4.203245e-27 F11 <-->
> >> F05
> >> C[F07,F08]    3.180037e-03 4.670052e-02  0.068094253  9.457106e-01 F08 <-->
> >> F07
> >> C[F07,F09]    6.292195e-03 1.535561e-01  0.040976532  9.673146e-01 F09 <-->
> >> F07
> >> C[F07,F11]    1.049909e-01 4.942732e-02  2.124147077  3.365785e-02 F11 <-->
> >> F07
> >> C[F08,F09]    1.346105e-02 3.284233e-01  0.040986879  9.673064e-01 F09 <-->
> >> F08
> >> C[F08,F11]    1.383223e-01 6.694679e-02  2.066152656  3.881407e-02 F11 <-->
> >> F08
> >> C[F09,F11]    4.571695e-02 1.115233e+00  0.040993193  9.673013e-01 F11 <-->
> >> F09
> >> V[I01]        8.680184e-03 4.762484e-04 18.226169942  3.199593e-74 I01 <-->
> >> I01
> >> V[I02]        7.459398e-03 4.540213e-04 16.429621740  1.173889e-60 I02 <-->
> >> I02
> >> V[I03]        7.478254e-03 3.527242e-04 21.201419570 9.265904e-100 I03 <-->
> >> I03
> >> V[I04]        1.461376e-01 7.255861e-03 20.140635357  3.251385e-90 I04 <-->
> >> I04
> >> V[I05]        1.339123e-02 8.832859e-04 15.160696593  6.438285e-52 I05 <-->
> >> I05
> >> V[I06]        8.789764e-02 4.794460e-03 18.333167786  4.499223e-75 I06 <-->
> >> I06
> >> V[I07]        7.568474e-03 3.765280e-04 20.100692934  7.277043e-90 I07 <-->
> >> I07
> >> V[I08]        6.587699e-02 3.167671e-03 20.796666217  4.639577e-96 I08 <-->
> >> I08
> >> V[I09]        3.217338e-03 1.517789e-04 21.197527600  1.006468e-99 I09 <-->
> >> I09
> >> V[I10]        4.621928e-02 2.185030e-03 21.152695320  2.606174e-99 I10 <-->
> >> I10
> >> V[I11]        1.535621e-01 7.387455e-03 20.786870576  5.690287e-96 I11 <-->
> >> I11
> >> V[I12]        3.908344e-02 1.860301e-03 21.009196121  5.404186e-98 I12 <-->
> >> I12
> >> V[I13]        1.983328e-02 9.856998e-04 20.121018746  4.830497e-90 I13 <-->
> >> I13
> >> V[I14]        1.710572e-01 1.211810e-02 14.115839622  3.033809e-45 I14 <-->
> >> I14
> >> V[I15]        1.075179e-03 5.071602e-05 21.199985035 9.552682e-100 I15 <-->
> >> I15
> >> V[I16]        1.326202e-02 6.467196e-04 20.506601881  1.879773e-93 I16 <-->
> >> I16
> >> V[I17]        3.265749e-02 1.988078e-03 16.426667150  1.232493e-60 I17 <-->
> >> I17
> >> V[I18]        1.075154e-03 5.071579e-05 21.199589039 9.633394e-100 I18 <-->
> >> I18
> >> V[I19]        4.579942e-02 2.353962e-03 19.456315348  2.576564e-84 I19 <-->
> >> I19
> >> V[I20]        2.413742e-01 1.144346e-02 21.092761358  9.269013e-99 I20 <-->
> >> I20
> >> V[I21]        1.269773e-02 6.009212e-04 21.130448044  4.175664e-99 I21 <-->
> >> I21
> >> V[I22]        2.667065e-01 1.265916e-02 21.068268778  1.555139e-98 I22 <-->
> >> I22
> >> V[I23]        1.072933e-03 5.069564e-05 21.164210344  2.041534e-99 I23 <-->
> >> I23
> >> V[I24]        3.024220e-02 1.426452e-03 21.200993757 9.350120e-100 I24 <-->
> >> I24
> >> V[I25]        4.271005e-02 2.065984e-03 20.672986805  6.064466e-95 I25 <-->
> >> I25
> >> V[I26]        8.208471e-02 3.892796e-03 21.086314551  1.062215e-98 I26 <-->
> >> I26
> >> V[I27]        3.448443e-02 1.627464e-03 21.189053796  1.204944e-99 I27 <-->
> >> I27
> >> V[I28]        1.074072e-03 5.065613e-05 21.203199739 8.921947e-100 I28 <-->
> >> I28
> >> V[I29]        1.388601e-02 6.548663e-04 21.204342235 8.707941e-100 I29 <-->
> >> I29
> >> V[I30]        3.656256e-02 1.724532e-03 21.201435371 9.262794e-100 I30 <-->
> >> I30
> >> V[I31]        1.989840e-01 9.383562e-03 21.205594692 8.479218e-100 I31 <-->
> >> I31
> >> V[I32]        5.755557e-02 2.882318e-03 19.968499245  1.035172e-88 I32 <-->
> >> I32
> >> V[I33]        2.481455e-01 1.532786e-02 16.189179144  6.012530e-59 I33 <-->
> >> I33
> >> V[I34]        1.484183e-02 7.000026e-04 21.202534570 9.048952e-100 I34 <-->
> >> I34
> >> V[I35]        7.415580e-03 3.516263e-04 21.089380308  9.955712e-99 I35 <-->
> >> I35
> >> V[I36]        2.011634e-02 9.488573e-04 21.200591226 9.430434e-100 I36 <-->
> >> I36
> >> V[I37]        1.047757e-03 5.025784e-05 20.847625170  1.601775e-96 I37 <-->
> >> I37
> >> V[I38]        2.156861e-02 3.241426e-03  6.654050864  2.851341e-11 I38 <-->
> >> I38
> >> V[I39]        1.265785e-01 6.238795e-03 20.288931432  1.610577e-91 I39 <-->
> >> I39
> >> V[I40]        2.541968e-01 1.242997e-02 20.450322391  5.967951e-93 I40 <-->
> >> I40
> >> V[I41]        8.528364e-02 4.023849e-03 21.194542822  1.072350e-99 I41 <-->
> >> I41
> >> V[I42]        8.216499e-02 3.888144e-03 21.132187265  4.024656e-99 I42 <-->
> >> I42
> >> V[I43]        1.337408e-02 6.438437e-04 20.772251070  7.715629e-96 I43 <-->
> >> I43
> >> V[I46]        1.907454e-01 8.996895e-03 21.201249767 9.299396e-100 I46 <-->
> >> I46
> >> V[I47]        8.508783e-03 4.165525e-04 20.426677159  9.687421e-93 I47 <-->
> >> I47
> >> V[I48]        2.714640e-01 1.280461e-02 21.200497563 9.449220e-100 I48 <-->
> >> I48
> >> V[I49]        3.218862e-03 1.518230e-04 21.201415045 9.266795e-100 I49 <-->
> >> I49
> >> V[I50]        7.447779e-03 3.685477e-04 20.208454710  8.249036e-91 I50 <-->
> >> I50
> >> V[I51]        2.929982e-05 1.053218e-04  0.278193234  7.808640e-01 I51 <-->
> >> I51
> >> V[I54]        1.833931e-01 8.842196e-03 20.740673158  1.488283e-95 I54 <-->
> >> I54
> >> V[I55]        4.784306e-02 2.783744e-03 17.186584134  3.346789e-66 I55 <-->
> >> I55
> >> V[I56]        1.304849e-01 6.185550e-03 21.095115843  8.818929e-99 I56 <-->
> >> I56
> >> V[I57]        8.868251e-02 4.280267e-03 20.718917274  2.338858e-95 I57 <-->
> >> I57
> >> V[I58]        2.765876e-01 1.332324e-02 20.759777754  1.000282e-95 I58 <-->
> >> I58
> >> V[I59]        1.309969e-01 6.275841e-03 20.873197799  9.384143e-97 I59 <-->
> >> I59
> >> V[I60]        2.844711e-02 1.341830e-03 21.200226581 9.503782e-100 I60 <-->
> >> I60
> >> V[I61]        3.368300e-02 1.992102e-03 16.908270471  3.910162e-64 I61 <-->
> >> I61
> >> V[I62]        7.504898e-03 3.540020e-04 21.200154519 9.518345e-100 I62 <-->
> >> I62
> >> V[I63]        7.472838e-02 3.568523e-03 20.940981942  2.267379e-97 I63 <-->
> >> I63
> >> V[I64]        5.371193e-03 2.533508e-04 21.200616220 9.425427e-100 I64 <-->
> >> I64
> >> V[I65]       -1.558692e+01 7.736661e+02 -0.020146825  9.839262e-01 I65 <-->
> >> I65
> >> V[I66]        6.009302e-02 2.837570e-03 21.177638375  1.535393e-99 I66 <-->
> >> I66
> >> V[I67]        1.075013e-03 5.220505e-05 20.592119939  3.229259e-94 I67 <-->
> >> I67
> >> V[I69]        8.817859e-02 5.000004e-03 17.635704215  1.310532e-69 I69 <-->
> >> I69
> >> V[I70]        2.218392e-02 1.279170e-03 17.342438243  2.249872e-67 I70 <-->
> >> I70
> >> V[I71]        3.093500e-02 1.758727e-03 17.589432179  2.968370e-69 I71 <-->
> >> I71
> >>
> >>  Iterations =  1000
> >>
> >> --------- snip ------------
> >>
> >> Several of the observed variables have R^2s that round to 0 and many more
> >> are very small.
> >>
> >> I don't have your original data, but I did look at the input covariance
> >> matrix. Here are the standard deviations of the observed variables:
> >>
> >> --------- snip ------------
> >>
> >> > sqrt(diag(cov.mat))
> >>        I01        I02        I03        I04        I05        I06
> >>  I07
> >>
> >> 0.09794939 0.09239769 0.08647698 0.40592964 0.14988296 0.34276336
> >> 0.09257290
> >>
> >>        I08        I09        I10        I11        I12        I13
> >>  I14
> >>
> >> 0.26288788 0.05673501 0.21562354 0.40159670 0.19999190 0.14969750
> >> 0.48787040
> >>
> >>        I15        I16        I17        I18        I19        I20
> >>  I21
> >>
> >> 0.03279129 0.11746460 0.20339207 0.03279129 0.22450179 0.49285671
> >> 0.11291786
> >>
> >>        I22        I23        I24        I25        I26        I27
> >>  I28
> >>
> >> 0.51844236 0.03279129 0.17390500 0.20982058 0.28746674 0.18587268
> >> 0.03279129
> >>
> >>        I29        I30        I31        I32        I33        I34
> >>  I35
> >>
> >> 0.11789736 0.19121352 0.44618622 0.24132578 0.50500808 0.12183229
> >> 0.08647698
> >>
> >>        I36        I37        I38        I39        I40        I41
> >>  I42
> >>
> >> 0.14183651 0.03279129 0.20705800 0.36721084 0.51768833 0.29210990
> >> 0.28739426
> >>
> >>        I43        I45        I46        I47        I48        I49
> >>  I50
> >>
> >> 0.11746460 0.13454976 0.43680464 0.09794939 0.52139099 0.05673501
> >> 0.09239769
> >>
> >>        I51        I54        I55        I56        I57        I58
> >>  I59
> >>
> >> 0.03279129 0.43984267 0.26013269 0.36354251 0.30622933 0.53958761
> >> 0.36898429
> >>
> >>        I60        I61        I62        I63        I64        I65
> >>  I66
> >>
> >> 0.16867489 0.22011795 0.08663745 0.27761032 0.07329198 0.52861343
> >> 0.24514452
> >>
> >>        I67        I68        I69        I70        I71
> >> 0.03279129 0.16616880 0.33665601 0.17020504 0.19965594
> >>
> >> --------- snip ------------
> >>
> >> Some of the standard deviations are very small, suggesting that the
> >> corresponding variables must have been close to invariant in your data set.
> >>
> >> If you haven't already done so, I think that you might back up and look
> >> more
> >> closely at your data, and perhaps seek some competent local help.
> >>
> >> I hope that this helps,
> >>  John
> >>
> >> -----------------------------------------------
> >> John Fox
> >> Senator McMaster Professor of Social Statistics
> >> Department of Sociology
> >> McMaster University
> >> Hamilton, Ontario, Canada
> >>
> >>
> >>
> >> > -----Original Message-----
> >> > From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org]
> >> > On Behalf Of Ruijie
> >> > Sent: Friday, February 08, 2013 9:56 PM
> >> > To: R-help at stat.math.ethz.ch
> >> > Subject: [R] Troubleshooting underidentification issues in structural
> >> > equation modelling (SEM)
> >> >
> >> > Hi all, hope someone can help me out with this.
> >> > Background Introduction
> >> >
> >> > I have a data set consisting of data collected from a questionnaire that
> >> > I
> >> > wish to validate. I have chosen to use confirmatory factor analysis to
> >> > analyse this data set.
> >> > Instrument
> >> >
> >> > The instrument consists of 11 subscales. There is a total of 68 items in
> >> > the 11 subscales. Each item is scored on an integer scale between 1 to
> >> > 4.
> >> > Confirmatory factor analysis (CFA) setup
> >> >
> >> > I use the sem package to conduct the CFA. My code is as below:
> >> >
> >> > cov.mat <-
> >> > as.matrix(read.table("http://dl.dropbox.com/u/1445171/cov.mat.csv",
> >> > sep = ",", header = TRUE))
> >> > rownames(cov.mat) <- colnames(cov.mat)
> >> >
> >> > model <- cfa(file = "http://dl.dropbox.com/u/1445171/cfa.model.txt",
> >> > reference.indicators = FALSE)
> >> > cfa.output <- sem(model, cov.mat, N = 900, maxiter = 80000, optimizer
> >> > = optimizerOptim)
> >> > Warning message:In eval(expr, envir, enclos) : Negative parameter
> >> > variances.Model may be underidentified.
> >> >
> >> > Straight off you might notice a few anomalies, let me explain.
> >> >
> >> >    - Why is the optimizer chosen to be optimizerOptim?
> >> >
> >> > ANS: I originally stuck with the default optimizerSem but no matter how
> >> > many iterations I run, either I run out of memory first (8GB RAM setup)
> >> > or
> >> > it would report no convergence Things "seemed" a little better when I
> >> > switched to optimizerOptim where by it would conclude successfully but
> >> > throws up the error that the model is underidentified. Upon closer
> >> > inspection, I realise that the output shows convergence as TRUE but
> >> > iterations is NA so I am not sure what is exactly happening.
> >> >
> >> >    - The maxiter is too high.
> >> >
> >> > ANS: If I set it to a lower value, it refuses to converge, although as
> >> > mentioned above, I doubt real convergence actually occurred.
> >> > Problem
> >> >
> >> > So by now I guess that the model is really underidentified so I looked
> >> > for
> >> > resources to resolve this problem and found:
> >> >
> >> >    - http://davidakenny.net/cm/identify_formal.htm
> >> >    - http://faculty.ucr.edu/~hanneman/soc203b/lectures/identify.html
> >> >
> >> > I followed the 2nd link quite closely and applied the t-rule:
> >> >
> >> >    - I have 68 observed variables, providing me with 68 variances and
> >> > 2278
> >> >    covariances between variables = *2346 data points*.
> >> >    - I also have 68 regression coefficients, 68 error variances of
> >> >    variables, 11 factor variances and 55 factor covariances to estimate
> >> > making
> >> >    it a total of 191 parameters.
> >> >    - Since I will be fixing the variances of the 11 latent factors to 1
> >> > for
> >> >    scaling, I would remove them from the parameters to estimate making
> >> > it a
> >> >    total of *180 parameters to estimate*.
> >> >       - My degrees of freedom is therefore 2346 - 180 = 2166, making it
> >> > an
> >> >       over identified model by the t-rule.
> >> >
> >> > Questions
> >> >
> >> >    1. Is the low variance of some of my items a possible cause for the
> >> >    underidentification? I was advised previously to remove items with
> >> > zero
> >> >    variance which led me to think about items which are very close to
> >> > zero.
> >> >    Should they be removed too?
> >> >    2. After reading much, I think but am not sure that it might be a
> >> > case
> >> >    of empirical underidentification. Is there a systematic way of
> >> > diagnosing
> >> >    what kind of underidentification it is? And what are my options to
> >> > proceed
> >> >    with my analysis?
> >> >
> >> > I have more questions but let's take it at these 2 for now. Thanks for
> >> > any
> >> > help!
> >> >
> >> > Regards,
> >> > Ruijie (RJ)
> >> >
> >> > --------
> >> > He who has a why can endure any how.
> >> >
> >> > ~ Friedrich Nietzsche
> >> >
> >> >       [[alternative HTML version deleted]]
> >> >
> >> > ______________________________________________
> >> > R-help at r-project.org mailing list
> >> > https://stat.ethz.ch/mailman/listinfo/r-help
> >> > PLEASE do read the posting guide http://www.R-project.org/posting-
> >> > guide.html
> >> > and provide commented, minimal, self-contained, reproducible code.
> >>
> >>
> >
> >         [[alternative HTML version deleted]]
> >
> > ______________________________________________
> > R-help at r-project.org mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
> 
> 
> 
> -- 
> 
> Bert Gunter
> Genentech Nonclinical Biostatistics
> 
> Internal Contact Info:
> Phone: 467-7374
> Website:
> http://pharmadevelopment.roche.com/index/pdb/pdb-functional-groups/pdb-biostatistics/pdb-ncb-home.htm
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



More information about the R-help mailing list