[R] spearman correlation and p-value as a matrix

Ozgul Inceoglu Ozgul.Inceoglu at ulb.ac.be
Thu Feb 14 16:22:21 CET 2013


you are right! I was so happy to find out the p-value criteria, I totally forgot about the spearman correlation, no I dont think there is an option of spearman correlation. Thank you for pointing that out!

Cheers,

Ö 


>Dear Ozgul,
>
>I made a comment in the previous email, which I didn't check it.
>Thank you for the ?cor2m().
>I checked the results of the example dataset with cor2m().  Does it have an option for spearman correlation?  
>
>The values below seem to be pearson
>#cor2m
> cor2m(bg,ag,trim=TRUE,alpha=0.05) ######I
>      Otu00022 Otu00029   Otu00039 Otu00042  Otu00101 Otu00105 Otu00125
>ag1  0.0000000      NaN  0.0000000      NaN 0.0000000      NaN      NaN
>ag2  0.0000000      NaN  0.0000000      NaN 0.7743597      NaN      NaN
>ag3 -0.8901029      NaN -0.8901029      NaN 0.0000000      NaN      NaN
>ag4  0.0000000      NaN  0.0000000      NaN 0.0000000      NaN      NaN
>ag5  0.0000000      NaN  0.0000000      NaN 0.0000000      NaN      NaN
>    Otu00131   Otu00137 Otu00155 Otu00158 Otu00172 Otu00181 Otu00185   Otu00190
>ag1      NaN  0.0000000      NaN      NaN      NaN      NaN      NaN  0.0000000
>ag2      NaN  0.0000000      NaN      NaN      NaN      NaN      NaN  0.0000000
>ag3      NaN -0.8901029      NaN      NaN      NaN      NaN      NaN -0.8901029
>ag4      NaN  0.0000000      NaN      NaN      NaN      NaN      NaN  0.0000000
>ag5      NaN  0.0000000      NaN      NaN      NaN      NaN      NaN  0.0000000
>    Otu00209   Otu00218
>ag1      NaN  0.0000000
>ag2      NaN  0.0000000
>ag3      NaN -0.8901029
>ag4      NaN  0.0000000
>ag5      NaN  0.0000000
>
>#Pearson correlation from my solution:
>resr<-do.call(rbind,lapply(split(bg_ag,1:nrow(bg_ag)),function(x)
> {res<-rcorr(cbind(bg[,x[,1]],ag[,x[,2]]))$r; row.names(res)<- 
>rep(paste(x[1],x[2],sep="_"),2);res})) 
> indx<-row(resr)%%2!=1
>resrnew<-as.matrix(resr[indx[,1],1]) 
>resrnew1<-data.frame(read.table(text=row.names(resrnew),sep="_",stringsAsFactors=FALSE),value=resrnew)
> row.names(resrnew1)<-1:nrow(resrnew1)
>library(reshape2)
> dcast(resrnew1,V2~V1,value.var="value")   V2    Otu00022 Otu00029    Otu00039 Otu00042   Otu00101 Otu00105 Otu00125
>#1 ag1 -0.12705141      NaN -0.12705141      NaN -0.6394308      NaN      NaN
>#2 ag2 -0.61522514      NaN -0.61522514      NaN  0.7743597      NaN      NaN
>#3 ag3 -0.89010286      NaN -0.89010286      NaN -0.2655363      NaN      NaN
>#4 ag4  0.03036290      NaN  0.03036290      NaN -0.5638320      NaN      NaN
>#5 ag5  0.08266317      NaN  0.08266317      NaN -0.2582930      NaN      NaN
> # Otu00131    Otu00137 Otu00155 Otu00158 Otu00172 Otu00181 Otu00185    Otu00190
>#1      NaN -0.12705141      NaN      NaN      NaN      NaN      NaN -0.12705141
>#2      NaN -0.61522514      NaN      NaN      NaN      NaN      NaN -0.61522514
>#3      NaN -0.89010286      NaN      NaN      NaN      NaN      NaN -0.89010286
>#4      NaN  0.03036290      NaN      NaN      NaN      NaN      NaN  0.03036290
>#5      NaN  0.08266317      NaN      NaN      NaN      NaN      NaN  0.08266317
> # Otu00209    Otu00218
>#1      NaN -0.12705141
>#2      NaN -0.61522514
>#3      NaN -0.89010286
>#4      NaN  0.03036290
>#5      NaN  0.08266317
>
>A.K.
>
>
>
>----- Original Message -----
>From: Ozgul Inceoglu <Ozgul.Inceoglu at ulb.ac.be>
>To: R help <r-help at r-project.org>
>Cc: 
>Sent: Thursday, February 14, 2013 1:10 AM
>Subject: Re: [R] spearman correlation and p-value as a matrix
>
>Thank you all for the answers. I really need to learn a lot. 
>Bu I also discover cor2m(x, y, trim = TRUE, alpha = 0.05)
>in ecodist package, which gives an output file with significant correlations.
>
>Özgül
>
>Yj>HI,
>>
>>#ag data was created
>>bg<- as.matrix(read.table(text=" 
>>     Otu00022 Otu00029 Otu00039 Otu00042 Otu00101 Otu00105 Otu00125 Otu00131 Otu00137 Otu00155 Otu00158 Otu00172 Otu00181 Otu00185 Otu00190 Otu00209 Otu00218 
>>Gi20Jun11  0.001217        0 0.001217        0 0.000000        0        0        0 0.001217        0        0        0        0        0 0.001217        0 0.001217 
>>Gi40Jun11  0.000000        0 0.000000        0 0.000000        0        0        0 0.000000        0        0        0        0        0 0.000000        0 0.000000 
>>Gi425Jun11 0.000000        0 0.000000        0 0.000000        0        0        0 0.000000        0        0        0        0        0 0.000000        0 0.000000 
>>Gi45Jun11  0.000000        0 0.000000        0 0.001513        0        0        0 0.000000        0        0        0        0        0 0.000000        0 0.000000 
>>Gi475Jun11 0.000000        0 0.000000        0 0.000000        0        0        0 0.000000        0        0        0        0        0 0.000000        0 0.000000 
>>Gi50Jun11  0.000000        0 0.000000        0 0.000000        0        0        0 0.000000        0        0        0        0        0 0.000000        0 0.000000 
>>",sep="",header=TRUE,stringsAsFactors=F))
>>set.seed(128)
>>ag<- matrix(rnorm(30),nrow=6)
>>colnames(ag)<- paste("ag",1:5,sep="")
>>bg_ag<-expand.grid(colnames(bg),colnames(ag),stringsAsFactors=FALSE)
>> attr(bg_ag,"out.attrs")<- NULL
>> library(Hmisc)
>>#correlation
>>resr<-do.call(rbind,lapply(split(bg_ag,1:nrow(bg_ag)),function(x) {res<-rcorr(cbind(bg[,x[,1]],ag[,x[,2]]),type="spearman")$r; row.names(res)<- rep(paste(x[1],x[2],sep="_"),2);res}))
>> head(resr)
>>#                 [,1]      [,2]
>>#Otu00022_ag1 1.0000000 0.1309307
>>#Otu00022_ag1 0.1309307 1.0000000
>>#Otu00029_ag1 1.0000000       NaN
>>#Otu00029_ag1       NaN 1.0000000
>>#Otu00039_ag1 1.0000000 0.1309307
>>#Otu00039_ag1 0.1309307 1.0000000
>>
>>#p-values
>>resP<-do.call(rbind,lapply(split(bg_ag,1:nrow(bg_ag)),function(x) {res<-rcorr(cbind(bg[,x[,1]],ag[,x[,2]]),type="spearman")$P; row.names(res)<- rep(paste(x[1],x[2],sep="_"),2);res}))
>>  head(resP)
>>#                  [,1]      [,2]
>>#Otu00022_ag1        NA 0.8047262
>>#Otu00022_ag1 0.8047262        NA
>>#Otu00029_ag1        NA       NaN
>>#Otu00029_ag1       NaN        NA
>>#Otu00039_ag1        NA 0.8047262
>>#Otu00039_ag1 0.8047262        NA
>>
>>#If you need only the values
>>indx<-row(resr)%%2!=1
>> resPnew<-as.matrix(resP[indx[,1],1])
>> resrnew<-as.matrix(resr[indx[,1],1])
>>
>>head(resPnew)
>>#                  [,1]
>>#Otu00022_ag1 0.8047262
>>#Otu00029_ag1       NaN
>>#Otu00039_ag1 0.8047262
>>#Otu00042_ag1       NaN
>>#Otu00101_ag1 0.1583024
>>#Otu00105_ag1       NaN
>>
>>head(resrnew)
>>#                   [,1]
>>#Otu00022_ag1  0.1309307
>>#Otu00029_ag1        NaN
>>#Otu00039_ag1  0.1309307
>>#Otu00042_ag1        NaN
>>#Otu00101_ag1 -0.6546537
>>#Otu00105_ag1        NaN
>>
>>A.K.
>>
>>
>>
>>
>>----- Original Message -----
>>From: Ozgul Inceoglu <Ozgul.Inceoglu at ulb.ac.be>
>>To: r-help at r-project.org
>>Cc: 
>>Sent: Wednesday, February 13, 2013 4:48 AM
>>Subject: [R] spearman correlation and p-value as a matrix
>>
>>I have two data matrices that I want to make the correlation between each column from data1 and each column from data 2 and also calculate the p-value Matrices dont have the same size and I tried such a script.
>>> bg <- read.table (file.choose(), header=T, row.names) 
>>> bg 
>>> Otu00022 Otu00029 Otu00039 Otu00042 Otu00101 Otu00105 Otu00125 Otu00131 Otu00137 Otu00155 Otu00158 Otu00172 Otu00181 Otu00185 Otu00190 Otu00209 Otu00218 
>>> Gi20Jun11 0.001217 0 0.001217 0 0.000000 0 0 0 0.001217 0 0 0 0 0 0.001217 0 0.001217 
>>> Gi40Jun11 0.000000 0 0.000000 0 0.000000 0 0 0 0.000000 0 0 0 0 0 0.000000 0 0.000000 
>>> Gi425Jun11 0.000000 0 0.000000 0 0.000000 0 0 0 0.000000 0 0 0 0 0 0.000000 0 0.000000 
>>> Gi45Jun11 0.000000 0 0.000000 0 0.001513 0 0 0 0.000000 0 0 0 0 0 0.000000 0 0.000000 
>>> Gi475Jun11 0.000000 0 0.000000 0 0.000000 0 0 0 0.000000 0 0 0 0 0 0.000000 0 0.000000 
>>> Gi50Jun11 0.000000 0 0.000000 0 0.000000 0 0 0 0.000000 0 0 0 0 0 0.000000 0 0.000000 
>>ag <- read.table (file.choose(), header=T, row.names) 
>>
>>for (i in 1:(ncol(bg))) 
>>for (j in 1:(ncol(ag))) 
>>print(c(i,j))
>>final_matrix <- matrix(rep("0",ncol(bg)*ncol(ag)),ncol=ncol(bg),nrow=ncol(ag))
>>
>>cor <- cor.test(as.vector(as.matrix(bg[,i])),as.vector(as.matrix(ag[,j])), method="spearman")
>>
>>#but the output is not matrice with all the values but a single correlation value
>>
>>data:  bg[, i] and ag[, j] 
>>t = 2.2992, df = 26, p-value = 0.02978
>>alternative hypothesis: true correlation is not equal to 0 
>>95 percent confidence interval:
>>0.04485289 0.67986803 
>>sample estimates:
>>      cor 
>>0.4110515 
>>
>># How I can creat an outfile with all the correlations and p-values?
>>
>>Thank you very much!
>>Özgül
>>
>>______________________________________________
>>R-help at r-project.org mailing list
>>https://stat.ethz.ch/mailman/listinfo/r-help
>>PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>>and provide commented, minimal, self-contained, reproducible code.
>>
>>
>>
>
>Özgül Inceoglu, PhD.
>
>Université Libre de Bruxelles
>Ecology of Aquatic Systems 
>Campus de la plaine CP221  
>Boulevard du triomphe  
>1050 Bruxelles Belgium  
>
>______________________________________________
>R-help at r-project.org mailing list
>https://stat.ethz.ch/mailman/listinfo/r-help
>PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>and provide commented, minimal, self-contained, reproducible code.
>
>
>

Özgül Inceoglu, PhD.

Université Libre de Bruxelles
Ecology of Aquatic Systems 
Campus de la plaine CP221  
Boulevard du triomphe  
1050 Bruxelles Belgium  



More information about the R-help mailing list