[R] Issue when using a coxph + summary function in R while using a pspline-transformed covariate
Dumortier, Thomas
thomas.dumortier at novartis.com
Thu Aug 1 10:02:34 CEST 2013
Hello
I have an issue with obtaining a confidence interval from a coxph object in R while using a spline-transformed covariate.
This is a time to event analysis using coxph() from the survival package.
In the model below, COVA is a continuous covariate. COVA is time-dependent hence the counting process notation. COVA is transformed via pspline, COVB (FALSE or TRUE) is a fixed covariate.
My goal is to get the confidence interval for COVB. With this purpose, I use the summary(…,conf.int=.95) function.
I have pasted the code and the console below.
The estimation works well.
The summary function returns the desired confidence interval in the console, but it returns a NULL object (psp.sum is returned NULL, see below the code and the console)
Note that if I do not use pspline, it works !!!!!
So it seems that the use of pspline is not compatible with the summary function.
This is a problem because I would like to do some simulation and need to retrieve the confidence interval from psp.sum.
Can you kindly help?
Rgds
Tom
CODE
psp<-coxph(Surv(DAY2,DAY2P1,EVTF)~COVB+pspline(COVA, df = 0, caic = T),data=dsn4,method='breslow')
psp
psp.sum<-summary(psp,conf.int=.95)
psp.sum
CONSOLE
1> psp<-coxph(Surv(DAY2,DAY2P1,EVTF)~COVB+pspline(COVA, df = 0, caic = T),data=dsn4,method='breslow')
1> psp
Call:
coxph(formula = Surv(DAY2, DAY2P1, EVTF) ~ COVB + pspline(COVA,
df = 0, caic = T), data = dsn4, method = "breslow")
coef se(coef) se2 Chisq DF p
COVBTRUE -1.625 0.4223 0.4198 14.80 1.00 1.2e-04
pspline(COVA, df = 0, caic -0.341 0.0761 0.0761 20.04 1.00 7.6e-06
pspline(COVA, df = 0, caic 1.95 0.83 1.3e-01
Iterations: 10 outer, 29 Newton-Raphson
Theta= 0.98
Degrees of freedom for terms= 1.0 1.8
Likelihood ratio test=22.3 on 2.81 df, p=4.52e-05 n= 16933
1> psp.sum<-summary(psp,conf.int=.95)
Call:
coxph(formula = Surv(DAY2, DAY2P1, EVTF) ~ COVB + pspline(COVA,
df = 0, caic = T), data = dsn4, method = "breslow")
n= 16933, number of events= 35
coef se(coef) se2 Chisq DF p
COVBTRUE -1.625 0.4223 0.4198 14.80 1.00 1.2e-04
pspline(COVA, df = 0, caic -0.341 0.0761 0.0761 20.04 1.00 7.6e-06
pspline(COVA, df = 0, caic 1.95 0.83 1.3e-01
exp(coef) exp(-coef) lower .95 upper .95
COVBTRUE 0.19690 5.08 8.61e-02 0.4506
ps(COVA)3 0.59903 1.67 3.48e-01 1.0301
ps(COVA)4 0.35872 2.79 1.36e-01 0.9470
ps(COVA)5 0.21394 4.67 5.82e-02 0.7857
ps(COVA)6 0.12594 7.94 2.69e-02 0.5898
ps(COVA)7 0.07290 13.72 1.31e-02 0.4051
ps(COVA)8 0.04275 23.39 6.84e-03 0.2673
ps(COVA)9 0.02647 37.78 3.89e-03 0.1802
ps(COVA)10 0.01785 56.04 2.45e-03 0.1301
ps(COVA)11 0.01310 76.32 1.68e-03 0.1024
ps(COVA)12 0.01019 98.11 1.19e-03 0.0870
ps(COVA)13 0.00810 123.39 8.32e-04 0.0790
ps(COVA)14 0.00645 154.95 5.43e-04 0.0767
ps(COVA)15 0.00512 195.45 3.26e-04 0.0803
ps(COVA)16 0.00405 246.92 1.80e-04 0.0913
ps(COVA)17 0.00320 312.04 9.11e-05 0.1127
ps(COVA)18 0.00254 394.32 4.29e-05 0.1499
ps(COVA)19 0.00201 498.30 1.89e-05 0.2133
Iterations: 10 outer, 29 Newton-Raphson
Theta= 0.98
Degrees of freedom for terms= 1.0 1.8
Concordance= 0.673 (se = 0.05 )
Rsquare= 0.001 (max possible= 0.026 )
Likelihood ratio test= 22.3 on 2.81 df, p=4.52e-05
Wald test = 24.6 on 2.81 df, p=1.48e-05
1> psp.sum
NULL
1>
More information about the R-help
mailing list