[R] Vectorized code for generating the Kac (Clement) matrix
Berend Hasselman
bhh at xs4all.nl
Fri Apr 26 13:12:22 CEST 2013
On 25-04-2013, at 17:18, Ravi Varadhan <ravi.varadhan at jhu.edu> wrote:
> Hi,
> I am generating large Kac matrices (also known as Clement matrix). This a tridiagonal matrix. I was wondering whether there is a vectorized solution that avoids the `for' loops to the following code:
>
> n <- 1000
>
> Kacmat <- matrix(0, n+1, n+1)
>
> for (i in 1:n) Kacmat[i, i+1] <- n - i + 1
>
> for (i in 2:(n+1)) Kacmat[i, i-1] <- i-1
>
> The above code is fast, but I am curious about vectorized ways to do this.
You could vectorize like this
Kacmat <- matrix(0, n+1, n+1)
Kacmat[row(Kacmat)==col(Kacmat)-1] <- n -(1:n) + 1
Kacmat[row(Kacmat)==col(Kacmat)+1] <- 1:n
But this show that your version is pretty quick
f1 <- function(n) {
Kacmat <- matrix(0, n+1, n+1)
for (i in 1:n) Kacmat[i, i+1] <- n - i + 1
for (i in 2:(n+1)) Kacmat[i, i-1] <- i-1
Kacmat
}
f2 <- function(n) {
Kacmat <- matrix(0, n+1, n+1)
Kacmat[row(Kacmat)==col(Kacmat)-1] <- n -(1:n) + 1
Kacmat[row(Kacmat)==col(Kacmat)+1] <-1:n
Kacmat
}
library(compiler)
f1.c <- cmpfun(f1)
f2.c <- cmpfun(f2)
n <- 5000
system.time(K1 <- f1(n))
system.time(K2 <- f2(n))
system.time(K3 <- f1.c(n))
system.time(K4 <- f2.c(n))
identical(K2,K1)
identical(K3,K1)
identical(K4,K1)
# > system.time(K1 <- f1(n))
# user system elapsed
# 0.386 0.120 0.512
# > system.time(K2 <- f2(n))
# user system elapsed
# 3.779 1.141 4.940
# > system.time(K3 <- f1.c(n))
# user system elapsed
# 0.323 0.119 0.444
# > system.time(K4 <- f2.c(n))
# user system elapsed
# 3.607 0.852 4.472
# > identical(K2,K1)
# [1] TRUE
# > identical(K3,K1)
# [1] TRUE
# > identical(K4,K1)
# [1] TRUE
Berend
More information about the R-help
mailing list