[R] List of Levels for all Factor variables
Lopez, Dan
lopez235 at llnl.gov
Wed Oct 17 18:55:21 CEST 2012
Thanks.
Dan
-----Original Message-----
From: arun [mailto:smartpink111 at yahoo.com]
Sent: Tuesday, October 16, 2012 10:09 AM
To: Lopez, Dan
Cc: R help; Rui Barradas
Subject: Re: [R] List of Levels for all Factor variables
HI,
You can also try this:
set.seed(1)
dat1<-data.frame(col1=factor(sample(1:25,10,replace=TRUE)),col2=sample(letters[1:10],10,replace=TRUE),col3=factor(rep(1:5,each=2)))
sapply(lapply(mapply(c,lapply(names(sapply(dat1,levels)),function(x) x),sapply(dat1,levels)),function(x) paste(x[1],":",paste(x[-1],collapse=" "))),print) #[1] "col1 : 2 6 7 10 15 16 17 23 24"
#[1] "col2 : b c d e g h j"
#[1] "col3 : 1 2 3 4 5"
#[1] "col1 : 2 6 7 10 15 16 17 23 24" "col2 : b c d e g h j" #[3] "col3 : 1 2 3 4 5"
A.K.
----- Original Message -----
From: "Lopez, Dan" <lopez235 at llnl.gov>
To: "R help (r-help at r-project.org)" <r-help at r-project.org>
Cc:
Sent: Tuesday, October 16, 2012 11:19 AM
Subject: [R] List of Levels for all Factor variables
Hi,
I want to get a clean succinct list of all levels for all my factor variables.
I have a dataframe that's something like #1 below. This is just an example subset of my data and my actual dataset has 70 variables. I know how to narrow down my list of variables to just my factor variables by using #2 below (thanks to Bert Gunter). I can also get list of all levels for all my factor variables using #3 below. But I what I want to find out is if there is a way to get this list in a similar fashion to what the str function returns: without all the extra spacing and carriage returns. That's what I mean by "clean succinct list".
BTW I also tried playing around with several of the parameters for the str function itself but could not find a way to accomplish what I want to accomplish.
1. DATAFRAME
> str(mydata)
'data.frame': 11868 obs. of 26 variables:
$ EMPLID : int 431108 32709 19730 10850 48786 2004 237628 558 3423 743175 ...
$ NAME : Factor w/ 6402 levels "Aaron Cathy E",..: 2777 242 161 104 336 4254 1595 1244 3669 4760 ...
$ TRAIN : int 1 1 1 1 1 1 1 1 1 1 ...
$ TARGET : int 0 0 0 0 0 0 0 0 0 0 ...
$ APPT_TYP_CD_LL : Factor w/ 3 levels "FX","IN","IP": 2 2 2 2 2 2 2 2 2 2 ...
$ ORG_NAM_LL : Factor w/ 18 levels "Business","Chief Financial Officer",..: 11 7 7 9 4 4 18 18 8 4 ...
$ NEW_DISCIPLINE : Factor w/ 15 levels "100s","300s",..: 14 6 4 1 11 11 14 2 1 1 ...
$ SERIES : Factor w/ 10 levels "100s","300s",..: 9 6 4 1 9 9 9 2 1 1 ...
$ AGE : int 62 53 46 62 55 59 50 36 34 53 ...
$ SERVICE : int 13 29 16 26 18 9 19 11 8 26 ...
$ AGE_SERVICE : int 75 82 62 87 73 69 69 47 42 79 ...
$ HIEDUCLV : Factor w/ 6 levels "Associate","Bachelor",..: 5 6 6 6 5 2 3 2 2 1 ...
$ GENDER : Factor w/ 2 levels "F","M": 2 2 2 1 2 2 2 2 2 1 ...
$ RETCD : Factor w/ 2 levels "TCP1","TCP2": 2 1 2 2 2 1 1 2 1 2 ...
$ FLSASTATUS : Factor w/ 2 levels "E","N": 1 2 2 1 1 1 1 1 1 1 ...
$ MONTHLY_RT : int 17640 6932 5845 9809 11473 8719 19190 8986 7231 6758 ...
$ RETSTATUSDERIVED: Factor w/ 4 levels "401K","DOUBLE DIPPERS",..: 2 4 3 2 3 4 4 3 4 3 ...
$ ETHNIC_GRP_CD : Factor w/ 8 levels "AMIND","ASIAN",..: 8 8 8 8 8 8 8 8 8 8 ...
$ COMMUTE_BIN : Factor w/ 7 levels "","<15","15 - 24",..: 5 7 2 2 4 3 3 6 3 2 ...
$ EEO_CLASS : Factor w/ 4 levels "M","S1","S2",..: 1 2 4 4 4 4 1 2 4 2 ...
$ WRK_SCHED : Factor w/ 6 levels "12HR","4/10s",..: 3 3 3 3 3 3 3 3 4 4 ...
$ FWT_MAR_STATUS : Factor w/ 2 levels "M","S": 1 1 1 1 2 1 1 1 1 2 ...
$ COVERED_DP : int 2 2 4 0 1 3 1 2 0 0 ...
$ YRS_IN_SERIES : int 13 29 16 26 18 9 19 3 7 26 ...
$ SAVINGS_PCT : int 10 0 6 19 8 0 10 15 15 18 ...
$ Generation : Factor w/ 4 levels "Baby Boomers",..: 1 1 2 1 1 1 1 2 2 1 ...
2. Create mydataF to only include factor variables (and exclude NAME which I am not interested in)
> mydataF<-mydata[,sapply(mydata,function(x)is.factor(x))][,-1]
3. Get a list of all levels
> sapply(mydataF,function(x)levels(x))
$APPT_TYP_CD_LL
[1] "FX" "IN" "IP"
$ORG_NAM_LL
[1] "Business" "Chief Financial Officer" "Chief Information Office" "Computation" "Engineering" "ESH and Quality"
[7] "Facilities and Infrastructure" "Global Security" "NIF" "NO" "Office of the Director" "Operations and Business Office"
[13] "Physical and Life Sciences" "Planning and Financial Services" "ST" "Security Organization" "Strategic Human Resources Mgmt" "WCI"
$NEW_DISCIPLINE
[1] "100s" "300s" "400s" "500s" "600s" "800s" "900s"
[8] "Chem Science" "Engineering" "Life Sciences" "Math Computer Science IT" "Physics" "pre100s" "PSTS Other"
[15] "Re"
$SERIES ......
Daniel Lopez
Workforce Analyst
HRIM - Workforce Analytics & Metrics
[[alternative HTML version deleted]]
______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list