[R] How to deal with missing values when using Random Forrest
Weidong Gu
anopheles123 at gmail.com
Mon Feb 27 00:10:09 CET 2012
Hi,
You can set na.action=na.roughfix which fills NAs with the mean or
mode of the missing variable.
Other option is to impute missing values using rfImpute, then run
randomForest on the complete data set.
Weidong Gu
On Sat, Feb 25, 2012 at 6:24 PM, kevin123 <kevincorry123 at gmail.com> wrote:
> I am using the package Random Forrest to test and train a model,
> I aim to predict (LengthOfStay.days),:
>
>> library(randomForest)
>> model <- randomForest( LengthOfStay.days~.,data = training,
> + importance=TRUE,
> + keep.forest=TRUE
> + )
>
>
> *This is a small portion of the data frame: *
>
> *data(training)*
>
> LengthOfStay.days CharlsonIndex.numeric DSFS.months
> 1 0 0.0 8.5
> 6 0 0.0 3.5
> 7 0 0.0 0.5
> 8 0 0.0 0.5
> 9 0 0.0 1.5
> 11 0 1.5 NaN
>
>
>
> *Error message*
>
> Error in na.fail.default(list(LengthOfStay.days = c(0, 0, 0, 0, 0, 0, :
> missing values in object,
>
> I would greatly appreciate any help
>
> Thanks
>
> Kevin
>
>
> --
> View this message in context: http://r.789695.n4.nabble.com/How-to-deal-with-missing-values-when-using-Random-Forrest-tp4421254p4421254.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list