[R] Constraint on one of parameters.
Rubén Roa
rroa at azti.es
Fri Feb 10 08:26:45 CET 2012
Read optimx's help.
There are 'method', 'upper', 'lower' arguments that'll let you put bounds on pars.
HTH
Rubén
-----Mensaje original-----
De: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] En nombre de FU-WEN LIANG
Enviado el: jueves, 09 de febrero de 2012 23:56
Para: r-help at r-project.org
Asunto: [R] Constraint on one of parameters.
Dear all,
I have a function to optimize for a set of parameters and want to set a constraint on only one parameter. Here is my function. What I want to do is estimate the parameters of a bivariate normal distribution where the correlation has to be between -1 and 1. Would you please advise how to revise it?
ex=function(s,prob,theta1,theta,xa,xb,xc,xd,t,delta) {
expo1= exp(s[3]*xa+s[4]*xb+s[5]*xc+s[6]*xd)
expo2= exp(s[9]*xa+s[10]*xb+s[11]*xc+s[12]*xd)
expo3= exp(s[15]*xa+s[16]*xb+s[17]*xc+s[18]*xd)
expo4= exp(s[21]*xa+s[22]*xb+s[23]*xc+s[24]*xd)
expo5= exp(s[27]*xa+s[28]*xb+s[29]*xc+s[30]*xd)
nume1=prob[1]*(s[2]^-s[1]*s[1]*t^(s[1]-1)*expo1)^delta*exp(-s[2]^-s[1]*t^s[1]*expo1)*
theta1[1]^xa*(1-theta1[1])^(1-xa)*theta1[2]^xb*(1-theta1[2])^(1-xb)*(1+theta1[11]*(xa-theta1[1])*(xb-theta1[2])/sqrt(theta1[1]*(1-theta1[1]))/sqrt(theta1[2]*(1-theta1[2])))/
(2*pi*theta[2]*theta[4]*sqrt(1-theta[21]^2))*exp(-2*(1-theta[21]^2))^(-1)*((xc-theta[1])^2/theta[2]^2+(xd-theta[3])^2/theta[4]^2-2*theta[21]^2*(xc-theta[1])*(xd-theta[3])/(theta[2]*theta[4]))
nume2=prob[2]*(s[8]^-s[7]*s[7]*t^(s[7]-1)*expo2)^delta*exp(-s[8]^-s[7]*t^s[7]*expo2)*
theta1[3]^xa*(1-theta1[3])^(1-xa)*theta1[4]^xb*(1-theta1[4])^(1-xb)*(1+theta1[11]*(xa-theta1[3])*(xb-theta1[4])/sqrt(theta1[3]*(1-theta1[3]))/sqrt(theta1[4]*(1-theta1[4])))/
(2*pi*theta[6]*theta[8]*sqrt(1-theta[21]^2))*exp(-2*(1-theta[21]^2))^(-1)*((xc-theta[5])^2/theta[6]^2+(xd-theta[7])^2/theta[8]^2-2*theta[21]^2*(xc-theta[5])*(xd-theta[7])/(theta[6]*theta[8]))
nume3=prob[3]*(s[14]^-s[13]*s[13]*t^(s[13]-1)*expo3)^delta*exp(-s[14]^-s[13]*t^s[13]*expo3)*
theta1[5]^xa*(1-theta1[5])^(1-xa)*theta1[6]^xb*(1-theta1[6])^(1-xb)*(1+theta1[11]*(xa-theta1[5])*(xb-theta1[6])/sqrt(theta1[5]*(1-theta1[5]))/sqrt(theta1[6]*(1-theta1[6])))/
(2*pi*theta[10]*theta[12]*sqrt(1-theta[21]^2))*exp(-2*(1-theta[21]^2))^(-1)*((xc-theta[9])^2/theta[10]^2+(xd-theta[11])^2/theta[12]^2-2*theta[21]^2*(xc-theta[9])*(xd-theta[11])/(theta[10]*theta[12]))
nume4=prob[4]*(s[20]^-s[19]*s[19]*t^(s[19]-1)*expo4)^delta*exp(-s[20]^-s[19]*t^s[19]*expo4)*
theta1[7]^xa*(1-theta1[7])^(1-xa)*theta1[8]^xb*(1-theta1[8])^(1-xb)*(1+theta1[11]*(xa-theta1[7])*(xb-theta1[8])/sqrt(theta1[7]*(1-theta1[7]))/sqrt(theta1[8]*(1-theta1[8])))/
(2*pi*theta[14]*theta[16]*sqrt(1-theta[21]^2))*exp(-2*(1-theta[21]^2))^(-1)*((xc-theta[13])^2/theta[14]^2+(xd-theta[15])^2/theta[16]^2-2*theta[21]^2*(xc-theta[13])*(xd-theta[15])/(theta[14]*theta[16]))
nume5=prob[5]*(s[26]^-s[25]*s[25]*t^(s[25]-1)*expo5)^delta*exp(-s[26]^-s[25]*t^s[25]*expo5)*
theta1[9]^xa*(1-theta1[9])^(1-xa)*theta1[10]^xb*(1-theta1[10])^(1-xb)*(1+theta1[11]*(xa-theta1[9])*(xb-theta1[10])/sqrt(theta1[9]*(1-theta1[9]))/sqrt(theta1[10]*(1-theta1[10])))/
(2*pi*theta[18]*theta[20]*sqrt(1-theta[21]^2))*exp(-2*(1-theta[21]^2))^(-1)*((xc-theta[17])^2/theta[18]^2+(xd-theta[19])^2/theta[20]^2-2*theta[21]^2*(xc-theta[17])*(xd-theta[19])/(theta[18]*theta[20]))
denom=nume1+nume2+nume3+nume4+nume5
Ep1=nume1/denom
Ep2=nume2/denom
Ep3=nume3/denom
Ep4=nume4/denom
Ep5=nume5/denom
elogld=
sum(Ep1*(-log(2*pi*theta[2]*theta[4]*sqrt(1-theta[21]^2))-(2*(1-theta[21]^2))^(-1)*((xc-theta[1])^2/theta[2]^2+(xd-theta[3])^2/theta[4]^2-2*theta[21]^2*(xc-theta[1])*(xd-theta[3])/(theta[2]*theta[4]))))
+
sum(Ep2*(-log(2*pi*theta[6]*theta[8]*sqrt(1-theta[21]^2))-(2*(1-theta[21]^2))^(-1)*((xc-theta[5])^2/theta[6]^2+(xd-theta[7])^2/theta[8]^2-2*theta[21]^2*(xc-theta[5])*(xd-theta[7])/(theta[6]*theta[8]))))
+
sum(Ep3*(-log(2*pi*theta[10]*theta[12]*sqrt(1-theta[21]^2))-(2*(1-theta[21]^2))^(-1)*((xc-theta[9])^2/theta[10]^2+(xd-theta[11])^2/theta[12]^2-2*theta[21]^2*(xc-theta[9])*(xd-theta[11])/(theta[10]*theta[12]))))
+
sum(Ep4*(-log(2*pi*theta[14]*theta[16]*sqrt(1-theta[21]^2))-(2*(1-theta[21]^2))^(-1)*((xc-theta[13])^2/theta[14]^2+(xd-theta[15])^2/theta[16]^2-2*theta[21]^2*(xc-theta[13])*(xd-theta[15])/(theta[14]*theta[16]))))
+
sum(Ep5*(-log(2*pi*theta[18]*theta[20]*sqrt(1-theta[21]^2))-(2*(1-theta[21]^2))^(-1)*((xc-theta[17])^2/theta[18]^2+(xd-theta[19])^2/theta[20]^2-2*theta[21]^2*(xc-theta[17])*(xd-theta[19])/(theta[18]*theta[20]))))
return(-elogld)
}
normal=optimx(c(15.5,0.4,10,1.3,17.5,0.3,15,1.5,13.5,0.5,19.5,1.1,20.7,0.4,30,0.4,25,0.7,24.6,1.6,0.5),ex,s=s,prob=prob,theta1=theta1,xa=xa,xb=xb,xc=xc,xd=xd,t=t,delta=delta)
When I run this code, I got this error:
In log(2 * pi * theta[6] * theta[8] * sqrt(1 - theta[21]^2)) : NaNs produced
Because (1-theta[21]^2)<0.
Would you please advise?
Thank you very much.
[[alternative HTML version deleted]]
______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list