[R] generalized mixed linear models, glmmPQL and GLMER give very different results that both do not fit the data well...
Bert Gunter
gunter.berton at gene.com
Thu Mar 17 18:45:31 CET 2011
I suggest that you post this on the R-sig-mixed-models list where you
are more likely to find those with bothe interest and expertise in
these matters.
-- Bert
On Thu, Mar 17, 2011 at 7:44 AM, Franssens, Samuel
<Samuel.Franssens at econ.kuleuven.be> wrote:
> Hi,
>
> I have the following type of data: 86 subjects in three independent groups (high power vs low power vs control). Each subject solves 8 reasoning problems of two kinds: conflict problems and noconflict problems. I measure accuracy in solving the reasoning problems. To summarize: binary response, 1 within subject var (TYPE), 1 between subject var (POWER).
>
> I wanted to fit the following model: for problem i, person j:
> logodds ( Y_ij ) = b_0j + b_1j TYPE_ij
> with b_0j = b_00 + b_01 POWER_j + u_0j
> and b_1j = b_10 + b_11 POWER_j
>
> I think it makes sense, but I'm not sure.
> Here are the observed cell means:
> conflict noconflict
> control 0.6896552 0.9568966
> high 0.6935484 0.9677419
> low 0.8846154 0.9903846
>
> GLMER gives me:
> summary(glmer(accuracy~f_power*f_type + (1|subject), family=binomial,data=syllogisms))
> Generalized linear mixed model fit by the Laplace approximation
> Formula: accuracy ~ f_power * f_type + (1 | subject)
> Data: syllogisms
> AIC BIC logLik deviance
> 406 437.7 -196 392
> Random effects:
> Groups Name Variance Std.Dev.
> subject (Intercept) 4.9968 2.2353
> Number of obs: 688, groups: subject, 86
>
> Fixed effects:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 1.50745 0.50507 2.985 0.00284 **
> f_powerhp 0.13083 0.70719 0.185 0.85323
> f_powerlow 2.04121 0.85308 2.393 0.01672 *
> f_typenoconflict 3.28715 0.64673 5.083 3.72e-07 ***
> f_powerhp:f_typenoconflict 0.21680 0.93165 0.233 0.81599
> f_powerlow:f_typenoconflict -0.01199 1.45807 -0.008 0.99344
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Correlation of Fixed Effects:
> (Intr) f_pwrh f_pwrl f_typn f_pwrh:_
> f_powerhp -0.714
> f_powerlow -0.592 0.423
> f_typncnflc -0.185 0.132 0.109
> f_pwrhp:f_t 0.128 -0.170 -0.076 -0.694
> f_pwrlw:f_t 0.082 -0.059 -0.144 -0.444 0.308
>
> glmmPQL gives me:
> summary(glmmPQL(fixed=accuracy~f_power*f_type, random=~1|subject, family=binomial, data=syllogisms))
> iteration 1
> iteration 2
> iteration 3
> iteration 4
> iteration 5
> iteration 6
> Linear mixed-effects model fit by maximum likelihood
> Data: syllogisms
> AIC BIC logLik
> NA NA NA
>
> Random effects:
> Formula: ~1 | subject
> (Intercept) Residual
> StdDev: 1.817202 0.8045027
>
> Variance function:
> Structure: fixed weights
> Formula: ~invwt
> Fixed effects: accuracy ~ f_power * f_type
> Value Std.Error DF t-value p-value
> (Intercept) 1.1403334 0.4064642 599 2.805496 0.0052
> f_powerhp 0.0996481 0.5683296 83 0.175335 0.8612
> f_powerlow 1.5358270 0.6486150 83 2.367856 0.0202
> f_typenoconflict 3.0096016 0.4769761 599 6.309754 0.0000
> f_powerhp:f_typenoconflict 0.1856061 0.6790046 599 0.273350 0.7847
> f_powerlow:f_typenoconflict 0.0968204 1.0318659 599 0.093830 0.9253
> Correlation:
> (Intr) f_pwrh f_pwrl f_typn f_pwrh:_
> f_powerhp -0.715
> f_powerlow -0.627 0.448
> f_typenoconflict -0.194 0.138 0.121
> f_powerhp:f_typenoconflict 0.136 -0.182 -0.085 -0.702
> f_powerlow:f_typenoconflict 0.089 -0.064 -0.153 -0.462 0.325
>
> Standardized Within-Group Residuals:
> Min Q1 Med Q3 Max
> -12.43735991 0.06243699 0.22966010 0.33106978 2.23942234
>
> Number of Observations: 688
> Number of Groups: 86
>
>
> Strange thing is that when you convert the estimates to probabilities, they are quite far off. For control, no conflict (intercept), the estimation from glmer is 1.5 -> 81% and for glmmPQL is 1.14 -> 75%, whereas the observed is: 68%.
>
> Am I doing something wrong?
>
> Any help is very much appreciated.
> Sam.
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
Bert Gunter
Genentech Nonclinical Biostatistics
More information about the R-help
mailing list