[R] silhouette: clustering labels have to be consecutive integers starting

Martin Maechler maechler at stat.math.ethz.ch
Wed May 13 14:13:48 CEST 2009


>>>>> "TS" == Tao Shi <shitao at hotmail.com>
>>>>>     on Wed, 10 Oct 2007 06:15:53 +0000 writes:

    TS> Thank you very much, Benilton and Prof. Ripley, for the
    TS> speedy replies!

    TS> Looking forward to the fix!
    TS> ....Tao

I have finally re-stumbled onto this e-mail thread,
and indeed found fixed the problem.

Version 1.12.0 of 'cluster' should become visible within a few days,
and will allow to call

    silhoutte(g, dis)

on a grouping vector of k different integer values which need
*not* necessarily be in 1:k.

Martin Maechler,
ETH Zurich


    >> From: Prof Brian Ripley <ripley at stats.ox.ac.uk>
    >> To: Benilton Carvalho <bcarvalh at jhsph.edu>
    >> CC: Tao Shi <shitao at hotmail.com>, maechler at stat.math.ethz.ch,        
    >> r-help at r-project.org
    >> Subject: Re: [R] silhouette: clustering labels have to be consecutive 
    >> intergers starting from 1?
    >> Date: Wed, 10 Oct 2007 05:33:03 +0100 (BST)
    >> 
    >> It is a C-level problem in package cluster: valgrind gives
    >> 
    >> ==11377== Invalid write of size 8
    >> ==11377==    at 0xA4015D3: sildist (sildist.c:35)
    >> ==11377==    by 0x4706D8: do_dotCode (dotcode.c:1750)
    >> 
    >> This is a matter for the package maintainer (Cc:ed here), not R-help.
    >> 
    >> On Tue, 9 Oct 2007, Benilton Carvalho wrote:
    >> 
    >>> that happened to me with R-2.4.0 (alpha) and was fixed on R-2.4.0
    >>> (final)...
    >>> 
    >>> http://tolstoy.newcastle.edu.au/R/e2/help/06/11/5061.html
    >>> 
    >>> then i stopped using... now, the problem seems to be back. The same
    >>> examples still apply.
    >>> 
    >>> This fails:
    >>> 
    >>> require(cluster)
    >>> set.seed(1)
    >>> x <- rnorm(100)
    >>> g <- sample(2:4, 100, rep=T)
    >>> for (i in 1:100){
    >>> print(i)
    >>> tmp <- silhouette(g, dist(x))
    >>> }
    >>> 
    >>> and this works:
    >>> 
    >>> require(cluster)
    >>> set.seed(1)
    >>> x <- rnorm(100)
    >>> g <- sample(2:4, 100, rep=T)
    >>> for (i in 1:100){
    >>> print(i)
    >>> tmp <- silhouette(as.integer(factor(g)), dist(x))
    >>> }
    >>> 
    >>> and here's the sessionInfo():
    >>> 
    >>> > sessionInfo()
    >>> R version 2.6.0 (2007-10-03)
    >>> x86_64-unknown-linux-gnu
    >>> 
    >>> locale:
    >>> LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US.U
    >>> TF-8;LC_MONETARY=en_US.UTF-8;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-
    >>> 8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_ID
    >>> ENTIFICATION=C
    >>> 
    >>> attached base packages:
    >>> [1] stats     graphics  grDevices utils     datasets  methods   base
    >>> 
    >>> other attached packages:
    >>> [1] cluster_1.11.9
    >>> 
    >>> 
    >>> (Red Hat EL 2.6.9-42 smp - AMD opteron 848)
    >>> 
    >>> b
    >>> 
    >>> On Oct 9, 2007, at 8:35 PM, Tao Shi wrote:
    >>> 
    >>>> Hi list,
    >>>> 
    >>>> When I was using 'silhouette' from the 'cluster' package to
    >>>> calculate clustering performances, R crashed.  I traced the problem
    >>>> to the fact that my clustering labels only have 2's and 3's.  when
    >>>> I replaced them with 1's and 2's, the problem was solved.  Is the
    >>>> function purposely written in this way so when I have clustering
    >>>> labels, "2" and "3", for example, the function somehow takes the
    >>>> 'missing' cluster "2" into account when it calculates silhouette
    >>>> widths?
    >>>> 
    >>>> Thanks,
    >>>> 
    >>>> ....Tao
    >>>> 
    >>>> ##============================================
    >>>> ## sorry about the long attachment
    >>>> 
    >>>>> R.Version()
    >>>> $platform
    >>>> [1] "i386-pc-mingw32"
    >>>> 
    >>>> $arch
    >>>> [1] "i386"
    >>>> 
    >>>> $os
    >>>> [1] "mingw32"
    >>>> 
    >>>> $system
    >>>> [1] "i386, mingw32"
    >>>> 
    >>>> $status
    >>>> [1] ""
    >>>> 
    >>>> $major
    >>>> [1] "2"
    >>>> 
    >>>> $minor
    >>>> [1] "5.1"
    >>>> 
    >>>> $year
    >>>> [1] "2007"
    >>>> 
    >>>> $month
    >>>> [1] "06"
    >>>> 
    >>>> $day
    >>>> [1] "27"
    >>>> 
    >>>> $`svn rev`
    >>>> [1] "42083"
    >>>> 
    >>>> $language
    >>>> [1] "R"
    >>>> 
    >>>> $version.string
    >>>> [1] "R version 2.5.1 (2007-06-27)"
    >>>> 
    >>>>> library(cluster)
    >>>>> cl1   ## clustering labels
    >>>> [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2
    >>>> [30] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
    >>>> [59] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
    >>>> [88] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
    >>>> [117] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
    >>>> [146] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
    >>>> [175] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
    >>>> [204] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
    >>>>> x1  ## 1-d input vector
    >>>> [1] 1.5707963 1.5707963 1.5707963 1.5707963 1.5707963
    >>>> [6] 1.5707963 1.5707963 1.5707963 1.5707963 1.5707963
    >>>> [11] 1.5707963 1.5707963 1.5707963 1.5707963 1.5707963
    >>>> [16] 1.5707963 1.5707963 1.5707963 1.5707963 1.5707963
    >>>> [21] 1.0163758 0.7657763 0.7370084 0.6999689 0.7366476
    >>>> [26] 0.7883921 0.6925395 0.7729240 0.7202391 0.7910149
    >>>> [31] 0.7397698 0.7958092 0.6978596 0.7350255 0.7294362
    >>>> [36] 0.6125713 0.7174000 0.7413046 0.7044205 0.7568104
    >>>> [41] 0.7048469 0.7334515 0.7143170 0.7002311 0.7540981
    >>>> [46] 0.7627527 0.7712762 0.8193611 0.7801148 0.9061762
    >>>> [51] 0.8248195 0.7932630 0.7248037 0.7423547 0.6419314
    >>>> [56] 0.6001092 0.7572272 0.7631742 0.7085384 0.8710853
    >>>> [61] 0.6589563 0.7464943 0.7487340 0.7751280 0.7946542
    >>>> [66] 0.7666081 0.8508109 0.8314308 0.7442471 0.8006093
    >>>> [71] 0.7949156 0.7852447 0.7630048 0.7104764 0.6768218
    >>>> [76] 0.6806351 0.7255355 0.7431389 0.7523627 0.7670515
    >>>> [81] 0.8118214 0.7215615 0.8186164 0.6941610 0.8285453
    >>>> [86] 0.8395170 0.8088044 0.8182706 0.7550723 0.7948639
    >>>> [91] 0.7204830 0.7109068 0.7756949 0.6837856 0.7055604
    >>>> [96] 0.6126666 0.7201964 0.6849890 0.7779753 0.7845284
    >>>> [101] 0.9370788 0.8242935 0.6908860 0.6446151 0.7660386
    >>>> [106] 0.8141526 0.8111984 0.8624186 0.7865335 0.8213035
    >>>> [111] 0.8059171 0.6735751 0.7815353 0.6972508 0.6699396
    >>>> [116] 0.6293971 0.7475913 0.7700821 0.8258339 0.8096144
    >>>> [121] 0.7058171 0.7516635 0.7323909 0.7229136 0.8344846
    >>>> [126] 0.7205433 0.8287774 0.8322097 0.7767547 0.7402277
    >>>> [131] 0.7939879 0.7797308 0.7112453 0.7091554 0.6417382
    >>>> [136] 0.6369171 0.7059020 0.7496380 0.7298359 0.8202566
    >>>> [141] 0.7331830 0.7344492 0.8316894 0.7323979 0.7977615
    >>>> [146] 0.7841205 0.7587060 0.8056685 0.7895643 0.8140731
    >>>> [151] 0.7890221 0.8016008 0.7381577 0.6936453 0.7133525
    >>>> [156] 0.7121459 0.6851448 0.7946275 0.8077618 0.7899059
    >>>> [161] 0.7128826 0.7546289 0.7042451 0.6606403 0.7525233
    >>>> [166] 0.7527548 0.8098887 0.8254190 0.7873064 0.8139340
    >>>> [171] 0.7903462 0.8377651 0.6709983 0.7423632 0.6632082
    >>>> [176] 0.5676717 0.6925125 0.7077083 0.7488877 0.7630604
    >>>> [181] 0.7843001 0.7524471 0.6871823 0.7144443 0.7692206
    >>>> [186] 0.8690710 0.9282786 0.7844991 0.7094671 0.7578409
    >>>> [191] 0.8026643 0.7759241 0.6997376 0.6167209 0.6682289
    >>>> [196] 0.6572018 0.7615807 0.7415752 0.7659161 0.7040360
    >>>> [201] 0.6874460 0.7052109 0.8290970 0.6915149 0.7173107
    >>>> [206] 0.7848961 0.7943846 0.8437946 0.7817344 0.8867006
    >>>> [211] 0.7575857 0.8390473 0.7382348 0.6789859 0.7129010
    >>>> [216] 0.6938173 0.7384170 0.6747648 0.7203337 0.7278963
    >>>>> silhouette(cl1, dist(x1)^2)  #####  CRASHED! ######
    >>>>> silhouette(ifelse(cl1==3,2,1), dist(x1)^2)
    >>>> cluster neighbor sil_width
    >>>> [1,]       2        1 1.0000000
    >>>> [2,]       2        1 1.0000000
    >>>> [3,]       2        1 1.0000000
    >>>> [4,]       2        1 1.0000000
    >>>> [5,]       2        1 1.0000000
    >>>> [6,]       2        1 1.0000000
    >>>> [7,]       2        1 1.0000000
    >>>> [8,]       2        1 1.0000000
    >>>> [9,]       2        1 1.0000000
    >>>> [10,]       2        1 1.0000000
    >>>> [11,]       2        1 1.0000000
    >>>> [12,]       2        1 1.0000000
    >>>> [13,]       2        1 1.0000000
    >>>> [14,]       2        1 1.0000000
    >>>> [15,]       2        1 1.0000000
    >>>> [16,]       2        1 1.0000000
    >>>> [17,]       2        1 1.0000000
    >>>> [18,]       2        1 1.0000000
    >>>> [19,]       2        1 1.0000000
    >>>> [20,]       2        1 1.0000000
    >>>> [21,]       1        2 0.7592857
    >>>> [22,]       1        2 0.9934455
    >>>> [23,]       1        2 0.9937880
    >>>> [24,]       1        2 0.9909544
    >>>> [25,]       1        2 0.9937769
    >>>> [26,]       1        2 0.9912442
    >>>> [27,]       1        2 0.9900156
    >>>> [28,]       1        2 0.9929499
    >>>> [29,]       1        2 0.9929125
    >>>> [30,]       1        2 0.9908637
    >>>> [31,]       1        2 0.9938610
    >>>> [32,]       1        2 0.9900958
    >>>> [33,]       1        2 0.9906993
    >>>> [34,]       1        2 0.9937227
    >>>> [35,]       1        2 0.9934823
    >>>> [36,]       1        2 0.9740954
    >>>> [37,]       1        2 0.9926948
    >>>> [38,]       1        2 0.9938924
    >>>> [39,]       1        2 0.9914623
    >>>> [40,]       1        2 0.9938250
    >>>> [41,]       1        2 0.9915088
    >>>> [42,]       1        2 0.9936633
    >>>> [43,]       1        2 0.9924367
    >>>> [44,]       1        2 0.9909855
    >>>> [45,]       1        2 0.9938891
    >>>> [46,]       1        2 0.9936028
    >>>> [47,]       1        2 0.9930799
    >>>> [48,]       1        2 0.9848568
    >>>> [49,]       1        2 0.9922685
    >>>> [50,]       1        2 0.9371272
    >>>> [51,]       1        2 0.9832647
    >>>> [52,]       1        2 0.9905154
    >>>> [53,]       1        2 0.9932217
    >>>> [54,]       1        2 0.9939101
    >>>> [55,]       1        2 0.9810071
    >>>> [56,]       1        2 0.9708675
    >>>> [57,]       1        2 0.9938131
    >>>> [58,]       1        2 0.9935827
    >>>> [59,]       1        2 0.9918943
    >>>> [60,]       1        2 0.9628701
    >>>> [61,]       1        2 0.9844965
    >>>> [62,]       1        2 0.9939491
    >>>> [63,]       1        2 0.9939495
    >>>> [64,]       1        2 0.9927610
    >>>> [65,]       1        2 0.9902895
    >>>> [66,]       1        2 0.9933968
    >>>> [67,]       1        2 0.9734481
    >>>> [68,]       1        2 0.9811285
    >>>> [69,]       1        2 0.9939341
    >>>> [70,]       1        2 0.9892304
    >>>> [71,]       1        2 0.9902461
    >>>> [72,]       1        2 0.9916649
    >>>> [73,]       1        2 0.9935909
    >>>> [74,]       1        2 0.9920846
    >>>> [75,]       1        2 0.9876779
    >>>> [76,]       1        2 0.9882868
    >>>> [77,]       1        2 0.9932665
    >>>> [78,]       1        2 0.9939213
    >>>> [79,]       1        2 0.9939182
    >>>> [80,]       1        2 0.9933699
    >>>> [81,]       1        2 0.9868129
    >>>> [82,]       1        2 0.9930074
    >>>> [83,]       1        2 0.9850624
    >>>> [84,]       1        2 0.9902300
    >>>> [85,]       1        2 0.9820895
    >>>> [86,]       1        2 0.9781906
    >>>> [87,]       1        2 0.9875197
    >>>> [88,]       1        2 0.9851569
    >>>> [89,]       1        2 0.9938688
    >>>> [90,]       1        2 0.9902547
    >>>> [91,]       1        2 0.9929304
    >>>> [92,]       1        2 0.9921257
    >>>> [93,]       1        2 0.9927096
    >>>> [94,]       1        2 0.9887702
    >>>> [95,]       1        2 0.9915856
    >>>> [96,]       1        2 0.9741195
    >>>> [97,]       1        2 0.9929094
    >>>> [98,]       1        2 0.9889500
    >>>> [99,]       1        2 0.9924910
    >>>> [100,]       1        2 0.9917552
    >>>> [101,]       1        2 0.9047049
    >>>> [102,]       1        2 0.9834247
    >>>> [103,]       1        2 0.9897916
    >>>> [104,]       1        2 0.9815845
    >>>> [105,]       1        2 0.9934304
    >>>> [106,]       1        2 0.9862375
    >>>> [107,]       1        2 0.9869624
    >>>> [108,]       1        2 0.9677353
    >>>> [109,]       1        2 0.9914973
    >>>> [110,]       1        2 0.9843076
    >>>> [111,]       1        2 0.9881568
    >>>> [112,]       1        2 0.9871393
    >>>> [113,]       1        2 0.9921114
    >>>> [114,]       1        2 0.9906240
    >>>> [115,]       1        2 0.9865148
    >>>> [116,]       1        2 0.9781846
    >>>> [117,]       1        2 0.9939511
    >>>> [118,]       1        2 0.9931681
    >>>> [119,]       1        2 0.9829519
    >>>> [120,]       1        2 0.9873341
    >>>> [121,]       1        2 0.9916130
    >>>> [122,]       1        2 0.9939273
    >>>> [123,]       1        2 0.9936196
    >>>> [124,]       1        2 0.9930999
    >>>> [125,]       1        2 0.9800620
    >>>> [126,]       1        2 0.9929347
    >>>> [127,]       1        2 0.9820138
    >>>> [128,]       1        2 0.9808614
    >>>> [129,]       1        2 0.9926103
    >>>> [130,]       1        2 0.9938711
    >>>> [131,]       1        2 0.9903987
    >>>> [132,]       1        2 0.9923097
    >>>> [133,]       1        2 0.9921578
    >>>> [134,]       1        2 0.9919558
    >>>> [135,]       1        2 0.9809652
    >>>> [136,]       1        2 0.9799023
    >>>> [137,]       1        2 0.9916220
    >>>> [138,]       1        2 0.9939454
    >>>> [139,]       1        2 0.9935022
    >>>> [140,]       1        2 0.9846059
    >>>> [141,]       1        2 0.9936526
    >>>> [142,]       1        2 0.9937017
    >>>> [143,]       1        2 0.9810402
    >>>> [144,]       1        2 0.9936199
    >>>> [145,]       1        2 0.9897557
    >>>> [146,]       1        2 0.9918058
    >>>> [147,]       1        2 0.9937665
    >>>> [148,]       1        2 0.9882099
    >>>> [149,]       1        2 0.9910776
    >>>> [150,]       1        2 0.9862575
    >>>> [151,]       1        2 0.9911553
    >>>> [152,]       1        2 0.9890393
    >>>> [153,]       1        2 0.9938209
    >>>> [154,]       1        2 0.9901624
    >>>> [155,]       1        2 0.9923515
    >>>> [156,]       1        2 0.9922418
    >>>> [157,]       1        2 0.9889731
    >>>> [158,]       1        2 0.9902939
    >>>> [159,]       1        2 0.9877542
    >>>> [160,]       1        2 0.9910280
    >>>> [161,]       1        2 0.9923092
    >>>> [162,]       1        2 0.9938784
    >>>> [163,]       1        2 0.9914431
    >>>> [164,]       1        2 0.9848184
    >>>> [165,]       1        2 0.9939159
    >>>> [166,]       1        2 0.9939125
    >>>> [167,]       1        2 0.9872706
    >>>> [168,]       1        2 0.9830805
    >>>> [169,]       1        2 0.9913937
    >>>> [170,]       1        2 0.9862925
    >>>> [171,]       1        2 0.9909633
    >>>> [172,]       1        2 0.9788584
    >>>> [173,]       1        2 0.9866989
    >>>> [174,]       1        2 0.9939102
    >>>> [175,]       1        2 0.9853007
    >>>> [176,]       1        2 0.9617883
    >>>> [177,]       1        2 0.9900120
    >>>> [178,]       1        2 0.9918102
    >>>> [179,]       1        2 0.9939489
    >>>> [180,]       1        2 0.9935882
    >>>> [181,]       1        2 0.9917836
    >>>> [182,]       1        2 0.9939170
    >>>> [183,]       1        2 0.9892708
    >>>> [184,]       1        2 0.9924478
    >>>> [185,]       1        2 0.9932287
    >>>> [186,]       1        2 0.9640487
    >>>> [187,]       1        2 0.9150126
    >>>> [188,]       1        2 0.9917589
    >>>> [189,]       1        2 0.9919865
    >>>> [190,]       1        2 0.9937946
    >>>> [191,]       1        2 0.9888295
    >>>> [192,]       1        2 0.9926884
    >>>> [193,]       1        2 0.9909269
    >>>> [194,]       1        2 0.9751339
    >>>> [195,]       1        2 0.9862132
    >>>> [196,]       1        2 0.9841566
    >>>> [197,]       1        2 0.9936557
    >>>> [198,]       1        2 0.9938973
    >>>> [199,]       1        2 0.9934375
    >>>> [200,]       1        2 0.9914201
    >>>> [201,]       1        2 0.9893087
    >>>> [202,]       1        2 0.9915481
    >>>> [203,]       1        2 0.9819092
    >>>> [204,]       1        2 0.9898774
    >>>> [205,]       1        2 0.9926876
    >>>> [206,]       1        2 0.9917091
    >>>> [207,]       1        2 0.9903339
    >>>> [208,]       1        2 0.9764847
    >>>> [209,]       1        2 0.9920887
    >>>> [210,]       1        2 0.9526866
    >>>> [211,]       1        2 0.9938025
    >>>> [212,]       1        2 0.9783714
    >>>> [213,]       1        2 0.9938230
    >>>> [214,]       1        2 0.9880267
    >>>> [215,]       1        2 0.9923108
    >>>> [216,]       1        2 0.9901850
    >>>> [217,]       1        2 0.9938279
    >>>> [218,]       1        2 0.9873388
    >>>> [219,]       1        2 0.9929195
    >>>> [220,]       1        2 0.9934017
    >>>> attr(,"Ordered")
    >>>> [1] FALSE
    >>>> attr(,"call")
    >>>> silhouette.default(x = ifelse(cl1 == 3, 2, 1), dist = dist(x1)^2)
    >>>> attr(,"class")
    >>>> [1] "silhouette"
    >>>> 
    >>>> ## other examples
    >>>>> set.seed(1234)
    >>>>> cl.tmp <- rep(2:3, each=5)
    >>>>> x.tmp <- c(rep(-1,5), abs(rnorm(5)+3))
    >>>>> silhouette(cl.tmp, dist(x.tmp))
    >>>> cluster neighbor  sil_width
    >>>> [1,]       2        1        NaN
    >>>> [2,]       2        1        NaN
    >>>> [3,]       2        1        NaN
    >>>> [4,]       2        1        NaN
    >>>> [5,]       2        1        NaN
    >>>> [6,]       3        2 -0.5736515
    >>>> [7,]       3        2 -0.1557143
    >>>> [8,]       3        2 -0.2922523
    >>>> [9,]       3        2 -0.8340174
    >>>> [10,]       3        2 -0.1511875
    >>>> attr(,"Ordered")
    >>>> [1] FALSE
    >>>> attr(,"call")
    >>>> silhouette.default(x = cl.tmp, dist = dist(x.tmp))
    >>>> attr(,"class")
    >>>> [1] "silhouette"
    >>>>> silhouette(ifelse(cl.tmp==2,1,2), dist(x.tmp))
    >>>> cluster neighbor  sil_width
    >>>> [1,]       1        2  1.0000000
    >>>> [2,]       1        2  1.0000000
    >>>> [3,]       1        2  1.0000000
    >>>> [4,]       1        2  1.0000000
    >>>> [5,]       1        2  1.0000000
    >>>> [6,]       2        1  0.4136253
    >>>> [7,]       2        1  0.7038917
    >>>> [8,]       2        1  0.6467668
    >>>> [9,]       2        1 -0.3360695
    >>>> [10,]       2        1  0.7054709
    >>>> attr(,"Ordered")
    >>>> [1] FALSE
    >>>> attr(,"call")
    >>>> silhouette.default(x = ifelse(cl.tmp == 2, 1, 2), dist = dist(x.tmp))
    >>>> attr(,"class")
    >>>> [1] "silhouette"
    >>>>> silhouette(ifelse(cl.tmp==2,1,3), dist(x.tmp))
    >>>> cluster neighbor  sil_width
    >>>> [1,]       1        2        NaN
    >>>> [2,]       1        2        NaN
    >>>> [3,]       1        2        NaN
    >>>> [4,]       1        2        NaN
    >>>> [5,]       1        2        NaN
    >>>> [6,]       3        1 -0.7694686
    >>>> [7,]       3        1 -0.8167313
    >>>> [8,]       3        1 -0.6054665
    >>>> [9,]       3        1 -0.9037412
    >>>> [10,]       3        1  0.1875360
    >>>> attr(,"Ordered")
    >>>> [1] FALSE
    >>>> attr(,"call")
    >>>> silhouette.default(x = ifelse(cl.tmp == 2, 1, 3), dist = dist(x.tmp))
    >>>> attr(,"class")
    >>>> [1] "silhouette"
    >>>> 
    >>>> _________________________________________________________________
    >>>> 
    >>>> It?s free. http://im.live.com/messenger/im/home/?source=TAGHM
    >>>> 
    >>>> <mime-attachment.txt>
    >>> 
    >>> ______________________________________________
    >>> R-help at r-project.org mailing list
    >>> https://stat.ethz.ch/mailman/listinfo/r-help
    >>> PLEASE do read the posting guide 
    >>> http://www.R-project.org/posting-guide.html
    >>> and provide commented, minimal, self-contained, reproducible code.
    >>> 
    >> 
    >> --
    >> Brian D. Ripley,                  ripley at stats.ox.ac.uk
    >> Professor of Applied Statistics,  http://www.stats.ox.ac.uk/~ripley/
    >> University of Oxford,             Tel:  +44 1865 272861 (self)
    >> 1 South Parks Road,                     +44 1865 272866 (PA)
    >> Oxford OX1 3TG, UK                Fax:  +44 1865 272595

    TS> ______________________________________________
    TS> R-help at r-project.org mailing list
    TS> https://stat.ethz.ch/mailman/listinfo/r-help
    TS> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
    TS> and provide commented, minimal, self-contained, reproducible code.




More information about the R-help mailing list