[R] modifying a built in function from the stats package (fixing arima) (CONCLUSIONS)
MarC Anonym ....
manonym at acompany.com
Fri Mar 6 11:53:47 CET 2009
Thanks a lot to everybody that helped me out with this.
Conclusions:
(1)
In order to edit arima in R:
>fix(arima)
or alternatively:
>arima<-edit(arima)
(2)
This is not contained in the "Introduction to R" manual.
(3)
A "productive" fix of arima is attached (arma coefficients printed out and
error catched so that it doesn't halt parent loops to search for candidate
coefficients):
Note 1: "productive" means I'm a beginner in R so there is probably a better
way to print the error message and fill the output arguments (I only return
NA in aic,var and sigma2).
Note 2: Changing BFGS to NelderMead in "exitpoint 0" changes the
coefficients for which arima can't fit a model but results in terms of aic
and sigma2 also change significantly. By visual inspection I think that BFGS
works better.
function (x, order = c(0, 0, 0), seasonal = list(order = c(0,
0, 0), period = NA), xreg = NULL, include.mean = TRUE, transform.pars =
TRUE,
fixed = NULL, init = NULL, method = c("CSS-ML", "ML", "CSS"),
n.cond, optim.control = list(), kappa = 1e+06)
{
"%+%" <- function(a, b) .Call(R_TSconv, a, b)
upARIMA <- function(mod, phi, theta) {
p <- length(phi)
q <- length(theta)
mod$phi <- phi
mod$theta <- theta
r <- max(p, q + 1)
if (p > 0)
mod$T[1:p, 1] <- phi
if (r > 1)
mod$Pn[1:r, 1:r] <- .Call(R_getQ0, phi, theta)
else if (p > 0)
mod$Pn[1, 1] <- 1/(1 - phi^2)
else mod$Pn[1, 1] <- 1
mod$a[] <- 0
mod
}
arimaSS <- function(y, mod) {
.Call(R_ARIMA_Like, y, mod$phi, mod$theta, mod$Delta,
mod$a, mod$P, mod$Pn, as.integer(0), TRUE)
}
armafn <- function(p, trans) {
par <- coef
par[mask] <- p
trarma <- .Call(R_ARIMA_transPars, par, arma, trans)
Z <- upARIMA(mod, trarma[[1]], trarma[[2]])
if (ncxreg > 0)
x <- x - xreg %*% par[narma + (1:ncxreg)]
res <- .Call(R_ARIMA_Like, x, Z$phi, Z$theta, Z$Delta,
Z$a, Z$P, Z$Pn, as.integer(0), FALSE)
s2 <- res[1]/res[3]
0.5 * (log(s2) + res[2]/res[3])
}
armaCSS <- function(p) {
par <- as.double(fixed)
par[mask] <- p
trarma <- .Call(R_ARIMA_transPars, par, arma, FALSE)
if (ncxreg > 0)
x <- x - xreg %*% par[narma + (1:ncxreg)]
res <- .Call(R_ARIMA_CSS, x, arma, trarma[[1]], trarma[[2]],
as.integer(ncond), FALSE)
0.5 * log(res)
}
arCheck <- function(ar) {
p <- max(which(c(1, -ar) != 0)) - 1
if (!p)
return(TRUE)
all(Mod(polyroot(c(1, -ar[1:p]))) > 1)
}
maInvert <- function(ma) {
q <- length(ma)
q0 <- max(which(c(1, ma) != 0)) - 1
if (!q0)
return(ma)
roots <- polyroot(c(1, ma[1:q0]))
ind <- Mod(roots) < 1
if (all(!ind))
return(ma)
if (q0 == 1)
return(c(1/ma[1], rep(0, q - q0)))
roots[ind] <- 1/roots[ind]
x <- 1
for (r in roots) x <- c(x, 0) - c(0, x)/r
c(Re(x[-1]), rep(0, q - q0))
}
series <- deparse(substitute(x))
if (NCOL(x) > 1)
stop("only implemented for univariate time series")
method <- match.arg(method)
x <- as.ts(x)
if (!is.numeric(x))
stop("'x' must be numeric")
storage.mode(x) <- "double"
dim(x) <- NULL
n <- length(x)
if (!missing(order))
if (!is.numeric(order) || length(order) != 3 || any(order <
0))
stop("'order' must be a non-negative numeric vector of length
3")
if (!missing(seasonal))
if (is.list(seasonal)) {
if (is.null(seasonal$order))
stop("'seasonal' must be a list with component 'order'")
if (!is.numeric(seasonal$order) || length(seasonal$order) !=
3 || any(seasonal$order < 0))
stop("'seasonal$order' must be a non-negative numeric vector
of length 3")
}
else if (is.numeric(order)) {
if (length(order) == 3)
seasonal <- list(order = seasonal)
else ("'seasonal' is of the wrong length")
}
else stop("'seasonal' must be a list with component 'order'")
if (is.null(seasonal$period) || is.na(seasonal$period) ||
seasonal$period == 0)
seasonal$period <- frequency(x)
arma <- as.integer(c(order[-2], seasonal$order[-2], seasonal$period,
order[2], seasonal$order[2]))
narma <- sum(arma[1:4])
xtsp <- tsp(x)
tsp(x) <- NULL
Delta <- 1
for (i in seq_len(order[2])) Delta <- Delta %+% c(1, -1)
for (i in seq_len(seasonal$order[2])) Delta <- Delta %+%
c(1, rep(0, seasonal$period - 1), -1)
Delta <- -Delta[-1]
nd <- order[2] + seasonal$order[2]
n.used <- sum(!is.na(x)) - length(Delta)
if (is.null(xreg)) {
ncxreg <- 0
}
else {
nmxreg <- deparse(substitute(xreg))
if (NROW(xreg) != n)
stop("lengths of 'x' and 'xreg' do not match")
ncxreg <- NCOL(xreg)
xreg <- as.matrix(xreg)
storage.mode(xreg) <- "double"
}
class(xreg) <- NULL
if (ncxreg > 0 && is.null(colnames(xreg)))
colnames(xreg) <- if (ncxreg == 1)
nmxreg
else paste(nmxreg, 1:ncxreg, sep = "")
if (include.mean && (nd == 0)) {
xreg <- cbind(intercept = rep(1, n), xreg = xreg)
ncxreg <- ncxreg + 1
}
if (method == "CSS-ML") {
anyna <- any(is.na(x))
if (ncxreg)
anyna <- anyna || any(is.na(xreg))
if (anyna)
method <- "ML"
}
if (method == "CSS" || method == "CSS-ML") {
ncond <- order[2] + seasonal$order[2] * seasonal$period
ncond1 <- order[1] + seasonal$period * seasonal$order[1]
ncond <- if (!missing(n.cond))
ncond + max(n.cond, ncond1)
else ncond + ncond1
}
else ncond <- 0
if (is.null(fixed))
fixed <- rep(NA_real_, narma + ncxreg)
else if (length(fixed) != narma + ncxreg)
stop("wrong length for 'fixed'")
mask <- is.na(fixed)
no.optim <- !any(mask)
if (no.optim)
transform.pars <- FALSE
if (transform.pars) {
ind <- arma[1] + arma[2] + seq_len(arma[3])
if (any(!mask[seq_len(arma[1])]) || any(!mask[ind])) {
warning("some AR parameters were fixed: setting transform.pars =
FALSE")
transform.pars <- FALSE
}
}
init0 <- rep(0, narma)
parscale <- rep(1, narma)
if (ncxreg) {
cn <- colnames(xreg)
orig.xreg <- (ncxreg == 1) || any(!mask[narma + 1:ncxreg])
if (!orig.xreg) {
S <- svd(na.omit(xreg))
xreg <- xreg %*% S$v
}
fit <- lm(x ~ xreg - 1, na.action = na.omit)
n.used <- sum(!is.na(resid(fit))) - length(Delta)
init0 <- c(init0, coef(fit))
ses <- summary(fit)$coefficients[, 2]
parscale <- c(parscale, 10 * ses)
}
if (n.used <= 0)
stop("too few non-missing observations")
if (!is.null(init)) {
if (length(init) != length(init0))
stop("'init' is of the wrong length")
if (any(ind <- is.na(init)))
init[ind] <- init0[ind]
if (method == "ML") {
if (arma[1] > 0)
if (!arCheck(init[1:arma[1]]))
stop("non-stationary AR part")
if (arma[3] > 0)
if (!arCheck(init[sum(arma[1:2]) + 1:arma[3]]))
stop("non-stationary seasonal AR part")
if (transform.pars)
init <- .Call(R_ARIMA_Invtrans, as.double(init),
arma)
}
}
else init <- init0
coef <- as.double(fixed)
skip<-0
if (!("parscale" %in% names(optim.control)))
optim.control$parscale <- parscale[mask]
if (method == "CSS") {
res <- if (no.optim)
list(convergence = 0, par = numeric(0), value =
armaCSS(numeric(0)))
else optim(init[mask], armaCSS, method = "BFGS", hessian = TRUE,
control = optim.control)
if (res$convergence > 0)
warning("possible convergence problem: optim gave code=",
res$convergence)
coef[mask] <- res$par
trarma <- .Call(R_ARIMA_transPars, coef, arma, FALSE)
mod <- makeARIMA(trarma[[1]], trarma[[2]], Delta, kappa)
if (ncxreg > 0)
x <- x - xreg %*% coef[narma + (1:ncxreg)]
arimaSS(x, mod)
val <- .Call(R_ARIMA_CSS, x, arma, trarma[[1]], trarma[[2]],
as.integer(ncond), TRUE)
sigma2 <- val[[1]]
var <- if (no.optim)
numeric(0)
else solve(res$hessian * n.used)
}
else {
if (method == "CSS-ML") {
exitpoint<-(-1);
res <- if (no.optim)
list(convergence = 0, par = numeric(0), value =
armaCSS(numeric(0)))
else optim(init[mask], armaCSS, method = "BFGS",
hessian = FALSE, control = optim.control)
if (res$convergence == 0)
init[mask] <- res$par
if (arma[1] > 0)
if (!arCheck(init[1:arma[1]]))
stop("non-stationary AR part from CSS")
if (arma[3] > 0)
if (!arCheck(init[sum(arma[1:2]) + 1:arma[3]]))
stop("non-stationary seasonal AR part from CSS")
ncond <- 0
}
if (transform.pars) {
init <- .Call(R_ARIMA_Invtrans, init, arma)
if (arma[2] > 0) {
ind <- arma[1] + 1:arma[2]
init[ind] <- maInvert(init[ind])
}
if (arma[4] > 0) {
ind <- sum(arma[1:3]) + 1:arma[4]
init[ind] <- maInvert(init[ind])
}
}
trarma <- .Call(R_ARIMA_transPars, init, arma, transform.pars)
mod <- makeARIMA(trarma[[1]], trarma[[2]], Delta, kappa)
exitpoint<-(0);
tryCatch({
res <- if (no.optim)
list(convergence = 0, par = numeric(0), value =
armafn(numeric(0),
as.logical(transform.pars)))
else optim(init[mask], armafn, method = "BFGS", hessian = TRUE,
control = optim.control, trans = as.logical(transform.pars))
if (res$convergence > 0)
warning("possible convergence problem: optim gave code=",
res$convergence)
coef[mask] <- res$par
if (transform.pars) {
if (arma[2] > 0) {
ind <- arma[1] + 1:arma[2]
if (all(mask[ind]))
coef[ind] <- maInvert(coef[ind])
}
if (arma[4] > 0) {
ind <- sum(arma[1:3]) + 1:arma[4]
if (all(mask[ind]))
coef[ind] <- maInvert(coef[ind])
}
if (any(coef[mask] != res$par)) {
oldcode <- res$convergence
exitpoint<-1
res <- optim(coef[mask], armafn, method = "BFGS",
hessian = TRUE, control = list(maxit = 0, parscale =
optim.control$parscale),
trans = TRUE)
res$convergence <- oldcode
coef[mask] <- res$par
}
A <- .Call(R_ARIMA_Gradtrans, as.double(coef), arma)
A <- A[mask, mask]
var <- t(A) %*% solve(res$hessian * n.used) %*% A
coef <- .Call(R_ARIMA_undoPars, coef, arma)
}
else var <- if (no.optim)
numeric(0)
else solve(res$hessian * n.used)
trarma <- .Call(R_ARIMA_transPars, coef, arma, FALSE)
mod <- makeARIMA(trarma[[1]], trarma[[2]], Delta, kappa)
val <- if (ncxreg > 0)
arimaSS(x - xreg %*% coef[narma + (1:ncxreg)], mod)
else arimaSS(x, mod)
sigma2 <- val[[1]][1]/n.used
skip<-0
}, error=function(e) {
print(paste(order[1],order[2],order[3],seasonal$order[1],seasona
l$order[2],seasonal$order[3],"SARIMA couldn't be fitted
(exitpoint:",exitpoint,")"))
skip<<-1
})
}
if (skip==0){
value <- 2 * n.used * res$value + n.used + n.used * log(2 *
pi)
aic <- if (method != "CSS")
value + 2 * sum(mask) + 2
else NA
nm <- NULL
if (arma[1] > 0)
nm <- c(nm, paste("ar", 1:arma[1], sep = ""))
if (arma[2] > 0)
nm <- c(nm, paste("ma", 1:arma[2], sep = ""))
if (arma[3] > 0)
nm <- c(nm, paste("sar", 1:arma[3], sep = ""))
if (arma[4] > 0)
nm <- c(nm, paste("sma", 1:arma[4], sep = ""))
if (ncxreg > 0) {
nm <- c(nm, cn)
if (!orig.xreg) {
ind <- narma + 1:ncxreg
coef[ind] <- S$v %*% coef[ind]
A <- diag(narma + ncxreg)
A[ind, ind] <- S$v
A <- A[mask, mask]
var <- A %*% var %*% t(A)
}
}
names(coef) <- nm
if (!no.optim)
dimnames(var) <- list(nm[mask], nm[mask])
resid <- val[[2]]
tsp(resid) <- xtsp
class(resid) <- "ts"
res <- list(coef = coef, sigma2 = sigma2, var.coef = var,
mask = mask, loglik = -0.5 * value, aic = aic, arma = arma,
residuals = resid, call = match.call(), series = series,
code = res$convergence, n.cond = ncond, model = mod)
class(res) <- "Arima"
res}
else{
aic<-NA
var<-NA
sigma2<-NA
res <- list(var.coef = var, aic = aic, arma = arma)
class(res) <- "Arima"
res
}
}
More information about the R-help
mailing list