[R] randomized block design analysis PROBLEM

Alisas aalisiyan at gmail.com
Thu Jul 30 10:28:06 CEST 2009


Dear All user,
Hello,
 
I'm a  student and I have some trouble with the experimental
(columns-experiments) design of my project. I use a randomized block design
with 4 treatments including a control. For each treatment, I use 3
replicates and 3 blocks.
 
The treatments are:
-T1 = COD (300 mg/Lit)   COD=chemical oxygen demand
-T2 = COD (200 mg/Lit)
-T3 = COD (100 mg/Lit)
-T4 = COD (0 mg/Lit) as a control
The experiment is conducted during three months and a sample is taken each
Week in every experimental unit.
At the first, I irrigated all soil columns (12 columns) with demonize water
for 1 week.

 
Then during 8 weeks, I irrigated all columns with waste water with different
concentration. Then, gain, I irrigated all columns with demonize water for 4
weeks.
Now I want to know how I can analyses the results in R. For example, I want
to detect the
Effect of waste water on some physical properties of soil, before, during
use waste water and after use waste water (Is there any significant change
in properties of soil.) Time is also important, so I want to know the
interaction between time and some physical properties of soil, like water
content .first comprises between Treatments and then comprise between
weeks).
Questions to be answered:
1)      Theta (water content), before (1 week) and after the COD; is there a
difference?
2)      Theta, during, before and after the COD; is there a difference?
3)      Is there a trend in Theta, during COD (8 weeks)?
4)      Is there a difference in Theta, during COD between the treatments?

I hope somebody can help me to find correct statistical analyses in R. I
sepnt a lot of time, but still , i have problems.

Kind regards,
 
Alisia 
----------------------------------------------------------------------------------------------------------
Week	Date BTC	timeexp	column	Block	Treatment	Condition	ThetaV				
0	22/jun/08	-4	1	1	T4	DW	0,0962		Irrigation with diminirize water		
0	22/jun/08	-4	2	1	T4	DW	0,0935		Irrigation with diminirize water		
0	22/jun/08	-4	3	1	T4	DW	0,1181		Irrigation with diminirize water		
0	22/jun/08	-4	4	1	T4	DW	0,0752		Irrigation with diminirize water		
0	22/jun/08	-4	5	2	T4	DW	0,0761		Irrigation with diminirize water		
0	22/jun/08	-4	6	2	T4	DW	0,0729		Irrigation with diminirize water		
0	25/jun/08	-1	7	2	T4	DW	0,076		Irrigation with diminirize water		
0	25/jun/08	-1	8	2	T4	DW	0,0766		Irrigation with diminirize water		
0	25/jun/08	-1	9	3	T4	DW	0,0981		Irrigation with diminirize water		
0	25/jun/08	-1	10	3	T4	DW	0,0628		Irrigation with diminirize water		
0	25/jun/08	-1	11	3	T4	DW	0,0867		Irrigation with diminirize water		
0	25/jun/08	-1	12	3	T4	DW	0,0657		Irrigation with diminirize water		
1	27/jun/08	1	1	1	T3	WW	0,0903		Irrigation with wastewater		
1	27/jun/08	1	2	1	T2	WW	0,0864		Irrigation with wastewater		
1	27/jun/08	1	3	1	T4	WW	0,1101		Irrigation with wastewater		
1	27/jun/08	1	4	1	T1	WW	0,0665		Irrigation with wastewater		
1	27/jun/08	1	5	2	T1	WW	0,0675		Irrigation with wastewater		
1	27/jun/08	1	6	2	T2	WW	0,0668		Irrigation with wastewater		
1	3/jul/08	7	7	2	T3	WW	0,0718		Irrigation with wastewater		
1	3/jul/08	7	8	2	T4	WW	0,0777		Irrigation with wastewater		
1	3/jul/08	7	9	3	T4	WW	0,0982		Irrigation with wastewater		
1	3/jul/08	7	10	3	T1	WW	0,065		Irrigation with wastewater		
1	3/jul/08	7	11	3	T2	WW	0,081		Irrigation with wastewater		
1	3/jul/08	7	12	3	T3	WW	0,0661		Irrigation with wastewater		
2	7/jul/08	11	1	1	T3	WW	0,0935		Irrigation with wastewater		
2	7/jul/08	11	2	1	T2	WW	0,0874		Irrigation with wastewater		
2	7/jul/08	11	3	1	T4	WW	0,1273		Irrigation with wastewater		
2	7/jul/08	11	4	1	T1	WW	0,0688		Irrigation with wastewater		
2	7/jul/08	11	5	2	T1	WW	0,07		Irrigation with wastewater		
2	7/jul/08	11	6	2	T2	WW	0,0686		Irrigation with wastewater		
2	10/jul/08	14	7	2	T3	WW	0,0743		Irrigation with wastewater		
2	10/jul/08	14	8	2	T4	WW	0,0774		Irrigation with wastewater		
2	10/jul/08	14	9	3	T4	WW	0,0996		Irrigation with wastewater		
2	10/jul/08	14	10	3	T1	WW	0,0593		Irrigation with wastewater		
2	10/jul/08	14	11	3	T2	WW	0,0818		Irrigation with wastewater		
2	10/jul/08	14	12	3	T3	WW	0,0658		Irrigation with wastewater		
3	12/jul/08	16	1	1	T3	WW	0,0939		Irrigation with wastewater		
3	12/jul/08	16	2	1	T2	WW	0,0884		Irrigation with wastewater		
3	12/jul/08	16	3	1	T4	WW	0,1077		Irrigation with wastewater		
3	12/jul/08	16	4	1	T1	WW	0,068		Irrigation with wastewater		
3	12/jul/08	16	5	2	T1	WW	0,0683		Irrigation with wastewater		
3	12/jul/08	16	6	2	T2	WW	0,0666		Irrigation with wastewater		
3	12/jul/08	16	7	2	T3	WW	0,068		Irrigation with wastewater		
3	16/jul/08	20	8	2	T4	WW	0,0739		Irrigation with wastewater		
3	16/jul/08	20	9	3	T4	WW	0,1033		Irrigation with wastewater		
3	16/jul/08	20	10	3	T1	WW	0,0594		Irrigation with wastewater		
3	16/jul/08	20	11	3	T2	WW	0,0799		Irrigation with wastewater		
3	16/jul/08	20	12	3	T3	WW	0,0623		Irrigation with wastewater		
3,5	18/jul/08	22	1	1	T3	WW	0,0961		Irrigation with wastewater		
3,5	18/jul/08	22	2	1	T2	WW	0,0911		Irrigation with wastewater		
3,5	18/jul/08	22	3	1	T4	WW	0,1066		Irrigation with wastewater		
3,5	18/jul/08	22	4	1	T1	WW	0,0715		Irrigation with wastewater		
3,5	18/jul/08	22	5	2	T1	WW	0,0704		Irrigation with wastewater		
3,5	18/jul/08	22	6	2	T2	WW	0,0685		Irrigation with wastewater		
3,5	20/jul/08	24	7	2	T3	WW	0,068		Irrigation with wastewater		
3,5	20/jul/08	24	8	2	T4	WW	0,0739		Irrigation with wastewater		
3,5	20/jul/08	24	9	3	T4	WW	0,1033		Irrigation with wastewater		
3,5	20/jul/08	24	10	3	T1	WW	0,0594		Irrigation with wastewater		
3,5	20/jul/08	24	11	3	T2	WW	0,0799		Irrigation with wastewater		
3,5	20/jul/08	24	12	3	T3	WW	0,0623		Irrigation with wastewater		
4	23/jul/08	27	1	1	T3	WW	0,0767		Irrigation with wastewater		
4	23/jul/08	27	2	1	T2	WW	0,0877		Irrigation with wastewater		
4	23/jul/08	27	3	1	T4	WW	0,104		Irrigation with wastewater		
4	23/jul/08	27	4	1	T1	WW	0,0593		Irrigation with wastewater		
4	23/jul/08	27	5	2	T1	WW	0,0646		Irrigation with wastewater		
4	23/jul/08	27	6	2	T2	WW	0,0668		Irrigation with wastewater		
4	26/jul/08	30	7	2	T3	WW	0,0645		Irrigation with wastewater		
4	26/jul/08	30	8	2	T4	WW	0,0705		Irrigation with wastewater		
4	26/jul/08	30	9	3	T4	WW	0,0942		Irrigation with wastewater		
4	26/jul/08	30	10	3	T1	WW	0,0553		Irrigation with wastewater		
4	26/jul/08	30	11	3	T2	WW	0,0744		Irrigation with wastewater		
4	26/jul/08	30	12	3	T3	WW	0,06		Irrigation with wastewater		
4,5	30/jul/08	34	1	1	T3	WW	0,0764		Irrigation with wastewater		
4,5	30/jul/08	34	2	1	T2	WW	0,0812		Irrigation with wastewater		
4,5	30/jul/08	34	3	1	T4	WW	0,1011		Irrigation with wastewater		
4,5	30/jul/08	34	4	1	T1	WW	0,0643		Irrigation with wastewater		
4,5	30/jul/08	34	5	2	T1	WW	0,0673		Irrigation with wastewater		
4,5	30/jul/08	34	6	2	T2	WW	0,064		Irrigation with wastewater		
4,5	1/aug/08	36	7	2	T3	WW	0,0623		Irrigation with wastewater		
4,5	1/aug/08	36	8	2	T4	WW	0,0646		Irrigation with wastewater		
4,5	1/aug/08	36	9	3	T4	WW	0,0702		Irrigation with wastewater		
4,5	1/aug/08	36	10	3	T1	WW	0,0531		Irrigation with wastewater		
4,5	1/aug/08	36	11	3	T2	WW	0,0707		Irrigation with wastewater		
4,5	1/aug/08	36	12	3	T3	WW	0,0619		Irrigation with wastewater		
5	6/aug/08	41	1	1	T3	WW	0,0766		Irrigation with wastewater		
5	6/aug/08	41	2	1	T2	WW	0,077		Irrigation with wastewater		
5	6/aug/08	41	3	1	T4	WW	0,1022		Irrigation with wastewater		
5	6/aug/08	41	4	1	T1	WW	0,0624		Irrigation with wastewater		
5	6/aug/08	41	5	2	T1	WW	0,0615		Irrigation with wastewater		
5	6/aug/08	41	6	2	T2	WW	0,061		Irrigation with wastewater		
5	9/aug/08	44	7	2	T3	WW	0,0594		Irrigation with wastewater		
5	9/aug/08	44	8	2	T4	WW	0,0709		Irrigation with wastewater		
5	9/aug/08	44	9	3	T4	WW	0,0787		Irrigation with wastewater		
5	9/aug/08	44	10	3	T1	WW	0,0523		Irrigation with wastewater		
5	9/aug/08	44	11	3	T2	WW	0,0778		Irrigation with wastewater		
5	9/aug/08	44	12	3	T3	WW	0,0626		Irrigation with wastewater		
6	11/aug/08	46	1	1	T3	WW	0,0702		Irrigation with wastewater		
6	11/aug/08	46	2	1	T2	WW	0,0787		Irrigation with wastewater		
6	11/aug/08	46	3	1	T4	WW	0,1035		Irrigation with wastewater		
6	11/aug/08	46	4	1	T1	WW	0,0607		Irrigation with wastewater		
6	11/aug/08	46	5	2	T1	WW	0,0617		Irrigation with wastewater		
6	11/aug/08	46	6	2	T2	WW	0,0613		Irrigation with wastewater		
6	13/aug/08	48	7	2	T3	WW	0,0616		Irrigation with wastewater		
6	13/aug/08	48	8	2	T4	WW	0,0649		Irrigation with wastewater		
6	13/aug/08	48	9	3	T4	WW	0,0737		Irrigation with wastewater		
6	13/aug/08	48	10	3	T1	WW	0,0534		Irrigation with wastewater		
6	13/aug/08	48	11	3	T2	WW	0,0777		Irrigation with wastewater		
6	13/aug/08	48	12	3	T3	WW	0,0675		Irrigation with wastewater		
6,5	15/aug/08	50	1	1	T3	WW	0,0728		Irrigation with wastewater		
6,5	15/aug/08	50	2	1	T2	WW	0,074		Irrigation with wastewater		
6,5	15/aug/08	50	3	1	T4	WW	0,0968		Irrigation with wastewater		
6,5	15/aug/08	50	4	1	T1	WW	0,0629		Irrigation with wastewater		
6,5	15/aug/08	50	5	2	T1	WW	0,0602		Irrigation with wastewater		
6,5	15/aug/08	50	6	2	T2	WW	0,0596		Irrigation with wastewater		
6,5	16/aug/08	51	7	2	T3	WW	0,0633		Irrigation with wastewater		
6,5	16/aug/08	51	8	2	T4	WW	0,0678		Irrigation with wastewater		
6,5	16/aug/08	51	9	3	T4	WW	0,09		Irrigation with wastewater		
6,5	16/aug/08	51	10	3	T1	WW	0,0545		Irrigation with wastewater		
6,5	16/aug/08	51	11	3	T2	WW	0,0745		Irrigation with wastewater		
6,5	16/aug/08	51	12	3	T3	WW	0,0673		Irrigation with wastewater		
7	20/aug/08	55	1	1	T3	WW	0,079		Irrigation with wastewater		
7	20/aug/08	55	2	1	T2	WW	0,0802		Irrigation with wastewater		
7	20/aug/08	55	3	1	T4	WW	0,0995		Irrigation with wastewater		
7	20/aug/08	55	4	1	T1	WW	0,0596		Irrigation with wastewater		
7	20/aug/08	55	5	2	T1	WW	0,0662		Irrigation with wastewater		
7	20/aug/08	55	6	2	T2	WW	0,0606		Irrigation with wastewater		
7	23/aug/08	58	7	2	T3	WW	0,0617		Irrigation with wastewater		
7	23/aug/08	58	8	2	T4	WW	0,0684		Irrigation with wastewater		
7	23/aug/08	58	9	3	T4	WW	0,09		Irrigation with wastewater		
7	23/aug/08	58	10	3	T1	WW	0,054		Irrigation with wastewater		
7	23/aug/08	58	11	3	T2	WW	0,0782		Irrigation with wastewater		
7	23/aug/08	58	12	3	T3	WW	0,0548		Irrigation with wastewater		
7,5	26/aug/08	61	1	1	T3	WW	0,0775		Irrigation with wastewater		
7,5	26/aug/08	61	2	1	T2	WW	0,0767		Irrigation with wastewater		
7,5	26/aug/08	61	3	1	T4	WW	0,1102		Irrigation with wastewater		
7,5	26/aug/08	61	4	1	T1	WW	0,0691		Irrigation with wastewater		
7,5	26/aug/08	61	5	2	T1	WW	0,0654		Irrigation with wastewater		
7,5	26/aug/08	61	6	2	T2	WW	0,0662		Irrigation with wastewater		
7,5	28/aug/08	63	7	2	T3	WW	0,0684		Irrigation with wastewater		
7,5	28/aug/08	63	8	2	T4	WW	0,0674		Irrigation with wastewater		
7,5	28/aug/08	63	9	3	T4	WW	0,0936		Irrigation with wastewater		
7,5	28/aug/08	63	10	3	T1	WW	0,055		Irrigation with wastewater		
7,5	28/aug/08	63	11	3	T2	WW	0,0751		Irrigation with wastewater		
7,5	28/aug/08	63	12	3	T3	WW	0,0651		Irrigation with wastewater		
8	4/sep/08	70	1	1	T3	WW	0,0839		Irrigation with wastewater		
8	4/sep/08	70	2	1	T2	WW	0,0841		Irrigation with wastewater		
8	4/sep/08	70	3	1	T4	WW	0,1073		Irrigation with wastewater		
8	4/sep/08	70	4	1	T1	WW	0,0661		Irrigation with wastewater		
8	4/sep/08	70	5	2	T1	WW	0,0668		Irrigation with wastewater		
8	4/sep/08	70	6	2	T2	WW	0,0734		Irrigation with wastewater		
8	9/sep/08	75	7	2	T3	WW	0,0699		Irrigation with wastewater		
8	9/sep/08	75	8	2	T4	WW	0,0729		Irrigation with wastewater		
8	9/sep/08	75	9	3	T4	WW	0,1004		Irrigation with wastewater		
8	9/sep/08	75	10	3	T1	WW	0,0569		Irrigation with wastewater		
8	9/sep/08	75	11	3	T2	WW	0,0748		Irrigation with wastewater		
8	9/sep/08	75	12	3	T3	WW	0,0636		Irrigation with wastewater		
9	15/sep/08	81	1	1	T3	DW	0,091		Irrigation with diminirize water		
9	15/sep/08	81	2	1	T2	DW	0,0952		Irrigation with diminirize water		
9	15/sep/08	81	3	1	T4	DW	0,1135		Irrigation with diminirize water		
9	15/sep/08	81	4	1	T1	DW	0,0839		Irrigation with diminirize water		
9	15/sep/08	81	5	2	T1	DW	0,0758		Irrigation with diminirize water		
9	15/sep/08	81	6	2	T2	DW	0,0684		Irrigation with diminirize water		
9	21/sep/08	87	7	2	T3	DW	0,0965		Irrigation with diminirize water		
9	21/sep/08	87	8	2	T4	DW	0,0887		Irrigation with diminirize water		
9	21/sep/08	87	9	3	T4	DW	0,1028		Irrigation with diminirize water		
9	21/sep/08	87	10	3	T1	DW	0,071		Irrigation with diminirize water		
9	21/sep/08	87	11	3	T2	DW	0,0712		Irrigation with diminirize water		
9	21/sep/08	87	12	3	T3	DW	0,0639		Irrigation with diminirize water		
10	2/okt/08	98	1	1	T3	DW	0,092		Irrigation with diminirize water		
10	2/okt/08	98	2	1	T2	DW	0,0895		Irrigation with diminirize water		
10	2/okt/08	98	3	1	T4	DW	0,1051		Irrigation with diminirize water		
10	2/okt/08	98	4	1	T1	DW	0,0768		Irrigation with diminirize water		
10	2/okt/08	98	5	2	T1	DW	0,0732		Irrigation with diminirize water		
10	2/okt/08	98	6	2	T2	DW	0,072		Irrigation with diminirize water		
10	7/okt/08	103	7	2	T3	DW	0,079		Irrigation with diminirize water		
10	7/okt/08	103	8	2	T4	DW	0,0684		Irrigation with diminirize water		
10	7/okt/08	103	9	3	T4	DW	0,1038		Irrigation with diminirize water		
10	7/okt/08	103	10	3	T1	DW	0,074		Irrigation with diminirize water		
10	7/okt/08	103	11	3	T2	DW	0,0699		Irrigation with diminirize water		
10	7/okt/08	103	12	3	T3	DW	0,0659		Irrigation with diminirize water		
11	10/okt/08	106	1	1	T3	DW	0,091		Irrigation with diminirize water		
11	10/okt/08	106	2	1	T2	DW	0,087		Irrigation with diminirize water		
11	10/okt/08	106	3	1	T4	DW	0,105		Irrigation with diminirize water		
11	10/okt/08	106	4	1	T1	DW	0,0776		Irrigation with diminirize water		
11	10/okt/08	106	5	2	T1	DW	0,071		Irrigation with diminirize water		
11	10/okt/08	106	6	2	T2	DW	0,0692		Irrigation with diminirize water		
11	14/okt/08	110	7	2	T3	DW	0,08		Irrigation with diminirize water		
11	14/okt/08	110	8	2	T4	DW	0,0514		Irrigation with diminirize water		
11	14/okt/08	110	9	3	T4	DW	0,1012		Irrigation with diminirize water		
11	14/okt/08	110	10	3	T1	DW	0,0625		Irrigation with diminirize water		
11	14/okt/08	110	11	3	T2	DW	0,0689		Irrigation with diminirize water		
11	14/okt/08	110	12	3	T3	DW	0,0649		Irrigation with diminirize water		
12	18/okt/08	114	1	1	T3	DW	0,096		Irrigation with diminirize water		
12	18/okt/08	114	2	1	T2	DW	0,093		Irrigation with diminirize water		
12	18/okt/08	114	3	1	T4	DW	0,1084		Irrigation with diminirize water		
12	18/okt/08	114	4	1	T1	DW	0,0756		Irrigation with diminirize water		
12	18/okt/08	114	5	2	T1	DW	0,0681		Irrigation with diminirize water		
12	18/okt/08	114	6	2	T2	DW	0,0689		Irrigation with diminirize water		
12	23/okt/08	119	7	2	T3	DW	0,077		Irrigation with diminirize water		
12	23/okt/08	119	8	2	T4	DW	0,0614		Irrigation with diminirize water		
12	23/okt/08	119	9	3	T4	DW	0,0999		Irrigation with diminirize water		
12	23/okt/08	119	10	3	T1	DW	0,0585		Irrigation with diminirize water		
12	23/okt/08	119	11	3	T2	DW	0,0681		Irrigation with diminirize water		
12	23/okt/08	119	12	3	T3	DW	0,0629		Irrigation with diminirize water		



----------------------------------------------------------------------------------------------

> mod <- aov(ThetaV ~ factor(Block) + Treatmen:factor(Week))
> anova(mod)
Analysis of Variance Table

Response: ThetaV
                      Df    Sum Sq   Mean Sq F value    Pr(>F)    
factor(Block)          2 0.0073713 0.0036856 49.4955 2.074e-15 ***
Treatmen:factor(Week) 47 0.0168852 0.0003593  4.8246 4.606e-11 ***
Residuals             94 0.0069996 0.0000745                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
> mod <- aov(ThetaV ~ factor(Block) + Treatmen*factor(Week))
> anova(mod)
Analysis of Variance Table

Response: ThetaV
                      Df    Sum Sq   Mean Sq F value    Pr(>F)    
factor(Block)          2 0.0073713 0.0036856 49.4955 2.074e-15 ***
Treatmen               3 0.0139313 0.0046438 62.3627 < 2.2e-16 ***
factor(Week)          11 0.0024297 0.0002209  2.9663  0.002038 ** 
Treatmen:factor(Week) 33 0.0005242 0.0000159  0.2133  0.999998    
Residuals             94 0.0069996 0.0000745                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
> TukeyHSD(mod,"Treatmen")
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = ThetaV ~ factor(Block) + Treatmen * factor(Week))

$Treatmen
              diff          lwr          upr     p adj
T2-T1  0.012650000  0.007330061 0.0179699388 0.0000001
T3-T1  0.008130556  0.002810617 0.0134504943 0.0007251
T4-T1  0.027086111  0.021766172 0.0324060499 0.0000000
T3-T2 -0.004519444 -0.009839383 0.0008004943 0.1247735
T4-T2  0.014436111  0.009116172 0.0197560499 0.0000000
T4-T3  0.018955556  0.013635617 0.0242754943 0.0000000

> tapply(ThetaV,Treatmen,mean)
        T1         T2         T3         T4 
0.06240833 0.07505833 0.07053889 0.08949444 
> tapply(NoThetaV,Week,mean)
         1          2          3          4          5          6          7 
0.07895000 0.08115000 0.07830833 0.07925000 0.07316667 0.06975833 0.07020000 
         8          9         10         11         12 
0.06957500 0.07030833 0.07101667 0.07414167 0.07667500 
> tapply(ThetaV,list(Week,Treatmen),mean)
           T1         T2         T3         T4
1  0.06633333 0.07806667 0.07606667 0.09533333
2  0.06603333 0.07926667 0.07786667 0.10143333
3  0.06523333 0.07830000 0.07473333 0.09496667
4  0.06710000 0.07983333 0.07546667 0.09460000
5  0.05973333 0.07630000 0.06706667 0.08956667
6  0.06156667 0.07196667 0.06686667 0.07863333
7  0.05873333 0.07193333 0.06620000 0.08393333
8  0.05860000 0.07256667 0.06643333 0.08070000
9  0.05920000 0.06936667 0.06780000 0.08486667
10 0.05993333 0.07300000 0.06516667 0.08596667
11 0.06316667 0.07266667 0.07033333 0.09040000
12 0.06326667 0.07743333 0.07246667 0.09353333
> _____________________________________________________________________________________________



> RBF <- aov(ThetaExpT$ThetaV ~ factor(ThetaExpT$Block) +
> factor(ThetaExpT$Week):factor(ThetaExpT$Treatment) )
> anova(RBF)
Analysis of Variance Table

Response: ThetaExpT$ThetaV
                                                    Df    Sum Sq   Mean Sq
factor(ThetaExpT$Block)                              2 0.0108151 0.0054075
factor(ThetaExpT$Week):factor(ThetaExpT$Treatment)  63 0.0215197 0.0003416
Residuals                                          126 0.0112558 0.0000893
                                                   F value    Pr(>F)    
factor(ThetaExpT$Block)                            60.5330 < 2.2e-16 ***
factor(ThetaExpT$Week):factor(ThetaExpT$Treatment)  3.8237 7.783e-11 ***
Residuals                                                               
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
> 
> RBF <- aov(ThetaExpT$ThetaV ~ factor(ThetaExpT$Block) +
> factor(ThetaExpT$Week)*factor(ThetaExpT$Treatment) )
> anova(RBF)
Analysis of Variance Table

Response: ThetaExpT$ThetaV
                                                    Df    Sum Sq   Mean Sq
factor(ThetaExpT$Block)                              2 0.0108151 0.0054075
factor(ThetaExpT$Week)                              15 0.0041717 0.0002781
factor(ThetaExpT$Treatment)                          3 0.0161244 0.0053748
factor(ThetaExpT$Week):factor(ThetaExpT$Treatment)  45 0.0012236 0.0000272
Residuals                                          126 0.0112558 0.0000893
                                                   F value    Pr(>F)    
factor(ThetaExpT$Block)                            60.5330 < 2.2e-16 ***
factor(ThetaExpT$Week)                              3.1133 0.0002501 ***
factor(ThetaExpT$Treatment)                        60.1665 < 2.2e-16 ***
factor(ThetaExpT$Week):factor(ThetaExpT$Treatment)  0.3044 0.9999915    
Residuals                                                               
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
> TukeyHSD(RBF,"Treatment")
Error in TukeyHSD.aov(RBF, "Treatment") : 'which' specified no factors
> TukeyHSD(RBF,"factor(ThetaExpT$Treatment)")
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = ThetaExpT$ThetaV ~ factor(ThetaExpT$Block) +
factor(ThetaExpT$Week) * factor(ThetaExpT$Treatment))

$`factor(ThetaExpT$Treatment)`
              diff          lwr         upr     p adj
T2-T1  0.010597917  0.005574723 0.015621111 0.0000012
T3-T1  0.008016667  0.002993473 0.013039861 0.0003436
T4-T1  0.025347917  0.020324723 0.030371111 0.0000000
T3-T2 -0.002581250 -0.007604444 0.002441944 0.5406528
T4-T2  0.014750000  0.009726806 0.019773194 0.0000000
T4-T3  0.017331250  0.012308056 0.022354444 0.0000000

> TukeyHSD(RBF,"factor(ThetaExpT$Week)")
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = ThetaExpT$ThetaV ~ factor(ThetaExpT$Block) +
factor(ThetaExpT$Week) * factor(ThetaExpT$Treatment))

$`factor(ThetaExpT$Week)`
                 diff           lwr         upr     p adj
2-1      0.0022000000 -0.0112915964 0.015691596 0.9999999
3-1     -0.0006416667 -0.0141332631 0.012849930 1.0000000
3.5-1    0.0003000000 -0.0131915964 0.013791596 1.0000000
4-1     -0.0057833333 -0.0192749297 0.007708263 0.9807680
4.5-1   -0.0091916667 -0.0226832631 0.004299930 0.5643712
5-1     -0.0087500000 -0.0222415964 0.004741596 0.6477289
6-1     -0.0093750000 -0.0228665964 0.004116596 0.5295103
6.5-1   -0.0086416667 -0.0221332631 0.004849930 0.6677096
7-1     -0.0079333333 -0.0214249297 0.005558263 0.7884928
7.5-1   -0.0048083333 -0.0182999297 0.008683263 0.9969774
8-1     -0.0022750000 -0.0157665964 0.011216596 0.9999998
9-1      0.0062083333 -0.0072832631 0.019699930 0.9638857
10-1     0.0018500000 -0.0116415964 0.015341596 1.0000000
11-1    -0.0014750000 -0.0149665964 0.012016596 1.0000000
12-1    -0.0008000000 -0.0142915964 0.012691596 1.0000000
3-2     -0.0028416667 -0.0163332631 0.010649930 0.9999952
3.5-2   -0.0019000000 -0.0153915964 0.011591596 1.0000000
4-2     -0.0079833333 -0.0214749297 0.005508263 0.7806960
4.5-2   -0.0113916667 -0.0248832631 0.002099930 0.2052535
5-2     -0.0109500000 -0.0244415964 0.002541596 0.2621502
6-2     -0.0115750000 -0.0250665964 0.001916596 0.1843734
6.5-2   -0.0108416667 -0.0243332631 0.002649930 0.2775172
7-2     -0.0101333333 -0.0236249297 0.003358263 0.3905650
7.5-2   -0.0070083333 -0.0204999297 0.006483263 0.9058749
8-2     -0.0044750000 -0.0179665964 0.009016596 0.9986299
9-2      0.0040083333 -0.0094832631 0.017499930 0.9996182
10-2    -0.0003500000 -0.0138415964 0.013141596 1.0000000
11-2    -0.0036750000 -0.0171665964 0.009816596 0.9998671
12-2    -0.0030000000 -0.0164915964 0.010491596 0.9999901
3.5-3    0.0009416667 -0.0125499297 0.014433263 1.0000000
4-3     -0.0051416667 -0.0186332631 0.008349930 0.9938879
4.5-3   -0.0085500000 -0.0220415964 0.004941596 0.6843839
5-3     -0.0081083333 -0.0215999297 0.005383263 0.7606483
6-3     -0.0087333333 -0.0222249297 0.004758263 0.6508201
6.5-3   -0.0080000000 -0.0214915964 0.005491596 0.7780682
7-3     -0.0072916667 -0.0207832631 0.006199930 0.8756776
7.5-3   -0.0041666667 -0.0176582631 0.009324930 0.9993965
8-3     -0.0016333333 -0.0151249297 0.011858263 1.0000000
9-3      0.0068500000 -0.0066415964 0.020341596 0.9204690
10-3     0.0024916667 -0.0109999297 0.015983263 0.9999992
11-3    -0.0008333333 -0.0143249297 0.012658263 1.0000000
12-3    -0.0001583333 -0.0136499297 0.013333263 1.0000000
4-3.5   -0.0060833333 -0.0195749297 0.007408263 0.9697055
4.5-3.5 -0.0094916667 -0.0229832631 0.003999930 0.5074372
5-3.5   -0.0090500000 -0.0225415964 0.004441596 0.5913084
6-3.5   -0.0096750000 -0.0231665964 0.003816596 0.4731081
6.5-3.5 -0.0089416667 -0.0224332631 0.004549930 0.6118196
7-3.5   -0.0082333333 -0.0217249297 0.005258263 0.7398602
7.5-3.5 -0.0051083333 -0.0185999297 0.008383263 0.9942829
8-3.5   -0.0025750000 -0.0160665964 0.010916596 0.9999987
9-3.5    0.0059083333 -0.0075832631 0.019399930 0.9766245
10-3.5   0.0015500000 -0.0119415964 0.015041596 1.0000000
11-3.5  -0.0017750000 -0.0152665964 0.011716596 1.0000000
12-3.5  -0.0011000000 -0.0145915964 0.012391596 1.0000000
4.5-4   -0.0034083333 -0.0168999297 0.010083263 0.9999484
5-4     -0.0029666667 -0.0164582631 0.010524930 0.9999915
6-4     -0.0035916667 -0.0170832631 0.009899930 0.9999001
6.5-4   -0.0028583333 -0.0163499297 0.010633263 0.9999948
7-4     -0.0021500000 -0.0156415964 0.011341596 0.9999999
7.5-4    0.0009750000 -0.0125165964 0.014466596 1.0000000
8-4      0.0035083333 -0.0099832631 0.016999930 0.9999255
9-4      0.0119916667 -0.0014999297 0.025483263 0.1427516
10-4     0.0076333333 -0.0058582631 0.021124930 0.8323616
11-4     0.0043083333 -0.0091832631 0.017799930 0.9991104
12-4     0.0049833333 -0.0085082631 0.018474930 0.9955808
5-4.5    0.0004416667 -0.0130499297 0.013933263 1.0000000
6-4.5   -0.0001833333 -0.0136749297 0.013308263 1.0000000
6.5-4.5  0.0005500000 -0.0129415964 0.014041596 1.0000000
7-4.5    0.0012583333 -0.0122332631 0.014749930 1.0000000
7.5-4.5  0.0043833333 -0.0091082631 0.017874930 0.9989162
8-4.5    0.0069166667 -0.0065749297 0.020408263 0.9145216
9-4.5    0.0154000000  0.0019084036 0.028891596 0.0102437
10-4.5   0.0110416667 -0.0024499297 0.024533263 0.2495770
11-4.5   0.0077166667 -0.0057749297 0.021208263 0.8206976
12-4.5   0.0083916667 -0.0050999297 0.021883263 0.7125787
6-5     -0.0006250000 -0.0141165964 0.012866596 1.0000000
6.5-5    0.0001083333 -0.0133832631 0.013599930 1.0000000
7-5      0.0008166667 -0.0126749297 0.014308263 1.0000000
7.5-5    0.0039416667 -0.0095499297 0.017433263 0.9996876
8-5      0.0064750000 -0.0070165964 0.019966596 0.9487494
9-5      0.0149583333  0.0014667369 0.028449930 0.0151166
10-5     0.0106000000 -0.0028915964 0.024091596 0.3137269
11-5     0.0072750000 -0.0062165964 0.020766596 0.8775993
12-5     0.0079500000 -0.0055415964 0.021441596 0.7859085
6.5-6    0.0007333333 -0.0127582631 0.014224930 1.0000000
7-6      0.0014416667 -0.0120499297 0.014933263 1.0000000
7.5-6    0.0045666667 -0.0089249297 0.018058263 0.9982809
8-6      0.0071000000 -0.0063915964 0.020591596 0.8966805
9-6      0.0155833333  0.0020917369 0.029074930 0.0086842
10-6     0.0112250000 -0.0022665964 0.024716596 0.2256286
11-6     0.0079000000 -0.0055915964 0.021391596 0.7936171
12-6     0.0085750000 -0.0049165964 0.022066596 0.6798597
7-6.5    0.0007083333 -0.0127832631 0.014199930 1.0000000
7.5-6.5  0.0038333333 -0.0096582631 0.017324930 0.9997770
8-6.5    0.0063666667 -0.0071249297 0.019858263 0.9553666
9-6.5    0.0148500000  0.0013584036 0.028341596 0.0165983
10-6.5   0.0104916667 -0.0029999297 0.023983263 0.3307898
11-6.5   0.0071666667 -0.0063249297 0.020658263 0.8896480
12-6.5   0.0078416667 -0.0056499297 0.021333263 0.8024391
7.5-7    0.0031250000 -0.0103665964 0.016616596 0.9999831
8-7      0.0056583333 -0.0078332631 0.019149930 0.9843135
9-7      0.0141416667  0.0006500703 0.027633263 0.0299922
10-7     0.0097833333 -0.0037082631 0.023274930 0.4531110
11-7     0.0064583333 -0.0070332631 0.019949930 0.9498107
12-7     0.0071333333 -0.0063582631 0.020624930 0.8932006
8-7.5    0.0025333333 -0.0109582631 0.016024930 0.9999990
9-7.5    0.0110166667 -0.0024749297 0.024508263 0.2529667
10-7.5   0.0066583333 -0.0068332631 0.020149930 0.9359982
11-7.5   0.0033333333 -0.0101582631 0.016824930 0.9999611
12-7.5   0.0040083333 -0.0094832631 0.017499930 0.9996182
9-8      0.0084833333 -0.0050082631 0.021974930 0.6963560
10-8     0.0041250000 -0.0093665964 0.017616596 0.9994636
11-8     0.0008000000 -0.0126915964 0.014291596 1.0000000
12-8     0.0014750000 -0.0120165964 0.014966596 1.0000000
10-9    -0.0043583333 -0.0178499297 0.009133263 0.9989846
11-9    -0.0076833333 -0.0211749297 0.005808263 0.8254130
12-9    -0.0070083333 -0.0204999297 0.006483263 0.9058749
11-10   -0.0033250000 -0.0168165964 0.010166596 0.9999624
12-10   -0.0026500000 -0.0161415964 0.010841596 0.9999981
12-11    0.0006750000 -0.0128165964 0.014166596 1.0000000

> 
___________________________________________________________________________________________

library(RODBC)
canal <- odbcConnectExcel("final_results_Oxct08")
A<- sqlFetch(canal,"A")
odbcCloseAll()
str(A)
model <- lm(ThetaV ~ Block + Treatment + condition, data = A)
residual<-residuals(model)
# Only efect time
model2 <- lm(residual ~ DateBTC, data=A)
summary(model2)
# Other case
model3 <- lm(ThetaV ~ Treatment, data = A)
summary(model3)
model4 <- lm(ThetaV ~ condition+DateBTC, data = A)
summary(model4)
model5 <- lm(ThetaV ~ condition, data = A)
summary(model5)

--------------------------------------------------------------------------------------------------

In this particular case, the fixed-effect model and the RCB 
design will give the same p-values: 


bad.aov <- aov(ThetaV ~ Treatment + Block, data=table) 
summary(bad.aov) 


------------------------------------------------------------------




library(nlme) 
m2 = lme(ThetaV ~ Treatment, random = ~1|Block, data=table) 
anova(m2) 


detach("package:nlme") 
library(lme4) 
m3 = lmer(ThetaV ~ Treatment+(1|Block), data=table) 
anova(m3) 

--------------------------------------------------------------------------------------------------

library(lme4)
water<-read.csv("locationofattachedfile",header=T)
attach(water)
model<-lmer(ThetaV~trt+(block|trt)+week+condition,data=water)
model
anova(model)

------------------------------------------------------------------------------------------------


alis.lme=lme(fixed=response~treatment-1 + time +
time*treatment,data=alis.grDat,random=~1|Block)
summary(alis.lme)

--------------------------------------------------------------------------------------------------------

-- 
View this message in context: http://www.nabble.com/randomized-block-design-analysis-PROBLEM-tp24734276p24734276.html
Sent from the R help mailing list archive at Nabble.com.




More information about the R-help mailing list