[R] lme funcion in R
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Tue Aug 4 10:28:12 CEST 2009
Dear Harry,
Your model seems rather complex. Do you have enough data to support it?
Did you check for multicollinearity between the variables?
HTH,
Thierry
------------------------------------------------------------------------
----
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature
and Forest
Cel biometrie, methodologie en kwaliteitszorg / Section biometrics,
methodology and quality assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium
tel. + 32 54/436 185
Thierry.Onkelinx at inbo.be
www.inbo.be
To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to
say what the experiment died of.
~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data.
~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of
data.
~ John Tukey
-----Oorspronkelijk bericht-----
Van: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org]
Namens Hongwei Dong
Verzonden: maandag 3 augustus 2009 19:45
Aan: r-help at r-project.org
Onderwerp: Re: [R] lme funcion in R
Thanks for the replies above. Here are my script and data structure:
library(nlme)
tlevel<-lme(fixed = LN_unitlandval ~
MH_D+APT_D+ResOth_D+NonRes_D+Vacant_D+access_emp1+pct_vacant+transit_D+p
ark_dum,data=lusdrdata,random
= ~MH_D+APT_D+ResOth_D+NonRes_D+Vacant_D | TAZ)
str:
$ TAZ : int 100 100 100 100 100 100 100 100 100 100 ...
$ MH_D : num 0 0 0 0 0 0 0 0 0 0 ...
$ APT_D : num 0 0 0 0 0 0 0 0 0 0 ... $ ResOth_D : num 0 0 0 0 0 0 0 0 0
0 ... $ NonRes_D : num 0 0 0 0 0 0 0 0 0 1 ...
$ Vacant_D : num 1 1 1 0 0 1 1 1 1 0 ...
$ access_emp1 : num 45.8 45.8 45.8 45.8 45.8 ...
$ pct_vacant : num 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 ... $
transit_D :
num 0 0 0 0 0 0 0 0 0 0 ... $ park_dum : num 0 0 0 0 0 0 0 0 0 0 ...
Thanks.
Harry
On Mon, Aug 3, 2009 at 10:36 AM, Jason Morgan <jwm-r-help at skepsi.net>
wrote:
> On 2009.08.03 10:15:46, Hongwei Dong wrote:
> > Hi, R users,
> > I'm using the "lme" function in R to estimate a 2 level mixed
> > effects model, in which the size of the subject groups are
> > different. It turned
> out
> > that It takes forever for R to converge. I also tried the same thing
> > in
> SPSS
> > and SPSS can give the results out within 20 minutes. Anyone can give
> > me
> some
> > advice on the lme function in R, especially why R does not converge?
> Thanks.
> >
> > Harry
>
> Hello Harry,
>
> As Chuck mentions, providing some more information on the model and
> the data you are using would be helpful. Also, be sure to compare the
> optimization methods used in SPSS to that used in R. You can change
> the optimization method in R if the default seems to be causing
> issues. See help(lmeControl) for numerous setting options.
>
> ~Jason
>
> --
> Jason W. Morgan
> Graduate Student
> Department of Political Science
> *The Ohio State University*
> 154 North Oval Mall
> Columbus, Ohio 43210
>
>
[[alternative HTML version deleted]]
______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer
en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is
door een geldig ondertekend document. The views expressed in this message
and any annex are purely those of the writer and may not be regarded as stating
an official position of INBO, as long as the message is not confirmed by a duly
signed document.
More information about the R-help
mailing list