[R] summary.lme and anova question
Christoph Scherber
Christoph.Scherber at agr.uni-goettingen.de
Thu Aug 21 11:07:24 CEST 2008
Dear all,
Thanks to Brian Ripley for pointing this out. If I understand it correctly, this would mean that
looking at the parameter estimates, standard errors and P-values in summary.lme only makes sense if
no interaction terms are present?
My conclusion would then be that it is better to rely on the anova.lme() output when assessing the
significance of terms in the model (rather than looking at the P-values from summary.lme).
Is that correct? Because in most books (e.g. Crawley, "The R book"), the P values from summary.lme
are used to assess the significance of terms.
Best wishes,
Christoph
Prof Brian Ripley schrieb:
> Please read the help for anova.lme, and note the 'type' argument. You
> are comparing apples and oranges here (exactly as if you did this for a
> linear model fit).
>
> Because you have a three-way interaction in your model, looking at the
> (marginal) t-tests for any other coefficient than the third-order
> interaction violates the marginality principle. And the third-order
> interaction seems to be important.
>
> On Thu, 21 Aug 2008, Christoph Scherber wrote:
>
>> Dear all,
>>
>> When analyzing data from a climate change experiment using linear
>> mixed-effects models, I recently
>> came across a situation where:
>>
>> - the summary(model) showed a significant difference between the
>> levels of a two-level factor,
>> - while the anova(model) showed no significance for that factor (see
>> below).
>>
>> My question now is: Is the anova.lme() approach correct for that
>> model? And why does the F-test for CO2 yield a non-significant
>> P-value, while the t-test in the summary.lme() is significant?
>
> CO2 on its own explains little, but allowing different CO2 effects
> within the levels of DROUGHT seems important.
>
> A good book on fitiing linear models (e.g. MASS chapter 6) will explain
> this to you.
>
>> Many thanks for your help!
>>
>> Best wishes
>> Christoph
>>
>> ######################################################
>>
>> mod11=lme(log(ind1+1) ~ CO2*DROUGHT*TEMP,
>> random=~1|B/C,na.action=na.exclude)
>>
>> summary(mod11)
>> Linear mixed-effects model fit by REML
>> Data: NULL
>> AIC BIC logLik
>> 97.3077 115.6069 -37.65385
>>
>> Random effects:
>> Formula: ~1 | B
>> (Intercept)
>> StdDev: 1.303146e-05
>>
>> Formula: ~1 | C %in% B
>> (Intercept) Residual
>> StdDev: 0.2466839 0.4846578
>>
>> Fixed effects: log(ind1 + 1) ~ CO2 * DROUGHT * TEMP
>> Value Std.Error DF t-value p-value
>> (Intercept) 1.9981490 0.2220158 29 9.000030 0.0000
>> CO2 -1.0308687 0.3139778 5 -3.283254 0.0219
>> DROUGHT -0.9715216 0.2798173 29 -3.471986 0.0016
>> TEMP -0.5592615 0.2954130 29 -1.893151 0.0684
>> CO2:DROUGHT 1.2196261 0.3957214 29 3.082032 0.0045
>> CO2:TEMP 0.9791044 0.4068987 29 2.406261 0.0227
>> DROUGHT:TEMP 0.6413038 0.4068987 29 1.576077 0.1259
>> CO2:DROUGHT:TEMP -1.1448624 0.5675932 29 -2.017047 0.0530
>> Correlation:
>> (Intr) CO2 DROUGHT TEMP CO2:DROUGHT CO2:TE DROUGHT:
>> CO2 -0.707 DROUGHT -0.630
>> 0.446 TEMP -0.597 0.422
>> 0.474 CO2:DROUGHT 0.446 -0.630 -0.707
>> -0.335 CO2:TEMP 0.433 -0.613 -0.344
>> -0.726 0.486 DROUGHT:TEMP 0.433 -0.306 -0.688
>> -0.726 0.486 0.527 CO2:DROUGHT:TEMP -0.311 0.439 0.493
>> 0.520 -0.697 -0.717 -0.717
>> Standardized Within-Group Residuals:
>> Min Q1 Med Q3 Max
>> -1.4631313 -0.5715171 -0.2024273 0.4592221 1.9568914
>>
>> Number of Observations: 47
>> Number of Groups:
>> B C %in% B
>> 6 12
>>
>> ######################################################
>>
>> anova(mod11)
>> numDF denDF F-value p-value
>> (Intercept) 1 29 162.95719 <.0001
>> CO2 1 5 1.15108 0.3324
>> DROUGHT 1 29 5.53240 0.0257
>> TEMP 1 29 0.04519 0.8331
>> CO2:DROUGHT 1 29 5.66686 0.0241
>> CO2:TEMP 1 29 1.88455 0.1803
>> DROUGHT:TEMP 1 29 0.03481 0.8533
>> CO2:DROUGHT:TEMP 1 29 4.06848 0.0530
>>
>>
>> ######################################################
>>
>> ______________________________________________
>> R-help at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide
>> http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
--
Dr. rer.nat. Christoph Scherber
University of Goettingen
DNPW, Agroecology
Waldweg 26
D-37073 Goettingen
Germany
phone +49 (0)551 39 8807
fax +49 (0)551 39 8806
Homepage http://www.gwdg.de/~cscherb1
More information about the R-help
mailing list