[R] NAIVE BAYES with 10-fold cross validation
"Julia Kröpfl"
jkroepfl at gmx.net
Wed Oct 31 11:13:32 CET 2007
thx for your help,
i checked the caret package out and the tuning works. but i can't find a way to make a contingency table in order to see the classification result.
e.g. like:
table(outcome NaiveBayes, mydata$code)
Is there something like that?
Julia
-------- Original-Nachricht --------
> Datum: Tue, 30 Oct 2007 17:03:49 -0400
> Von: "Kuhn, Max" <Max.Kuhn at pfizer.com>
> An: "Julia Kröpfl" <jkroepfl at gmx.net>, r-help at r-project.org
> Betreff: RE: [R] NAIVE BAYES with 10-fold cross validation
> > am trying to implement the code of the e1071 package for naive bayes,
> > but it doens't really work, any ideas??
> > am very glad about any help!!
> > need a naive bayes with 10-fold cross validation:
>
> The caret package will do this. Use
>
> fit <- train(
> x, y, method = "nb",
> trControl = trainControl(method = "cv", number = 10))
>
> (there is no formula interface yet).
>
> It will use the naïve Bayes implementation in klaR. Unless you specify
> otherwise, it will train naïve Bayes models with and without using kernel
> density estimation (but you can change that).
>
> The object fit$finalModel will contain the model fit that is "cv optimal".
>
> For example:
>
> > fit <- train(
> + iris[,-5], iris$Species, "nb",
> + trControl = trainControl(method = "cv", number = 10))
> Iter 1 Values: TRUE
> Loading required package: MASS
> Loading required package: class
> Iter 2 Values: FALSE
> >
> > fit
>
> Call:
> train.default(x = iris[, -5], y = iris$Species, method = "nb",
> trControl = trainControl(method = "cv", number = 10))
>
> 150 samples
> 4 predictors
>
> summary of cross-validation (10 fold) sample sizes:
> 135, 135, 135, 135, 135, 135, ...
>
> cv resampled training results across tuning parameters:
>
> usekernel Accuracy Kappa Accuracy SD Kappa SD Optimal
> FALSE 0.953 0.93 0.0706 0.106
> TRUE 0.96 0.94 0.0562 0.0843 *
>
> Accuracy was used to select the optimal model
>
>
> Max
>
>
> -----Original Message-----
> From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org]
> On Behalf Of "Julia Kröpfl"
> Sent: Tuesday, October 30, 2007 4:46 PM
> To: r-help at r-project.org
> Subject: [R] NAIVE BAYES with 10-fold cross validation
>
> hi there!!
>
> i am trying to implement the code of the e1071 package for naive bayes,
> but it doens't really work, any ideas??
> i am very glad about any help!!
> i need a naive bayes with 10-fold cross validation:
>
> code:
> library(e1071)
>
> model <- naiveBayes(code ~ ., mydata)
>
> tune.control <- tune.control(random = FALSE, nrepeat = 1, repeat.aggregate
> = min,
> sampling = c("cross"), sampling.aggregate = mean,
> cross = 10, best.model = TRUE, performances = TRUE)
>
> pred <- predict(model, mydata[,-12], type="class")
> tune(naiveBayes, code~., mydata, predict.fun=pred, tune.control)
>
>
> thx for your help!
> cheers, julia
> --
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
--
Psssst! Schon vom neuen GMX MultiMessenger gehört?
Der kann`s mit allen: http://www.gmx.net/de/go/multimessenger
More information about the R-help
mailing list