[R] diagonal LDA
Martin Maechler
maechler at stat.math.ethz.ch
Tue Nov 20 09:33:05 CET 2007
>>>>> "ac" == array chip <arrayprofile at yahoo.com>
>>>>> on Thu, 15 Nov 2007 22:50:23 -0800 (PST) writes:
ac> Thanks for suggestion. the dlda() function in supclust
ac> only outputs the class prediction without details of the
ac> model and the posterior probabilities like the lda()
ac> function in MASS. Is there an equivalent to the lda()
ac> for diagonal linear discriminant analysis?
"equivalent" probably not;
but when working/testing/... with the maintainer of the
'supclust' package, mentioned below,
I found it useful to add
dDA()
diagDA()
to package 'sfsmisc'
---> install.packages("sfsmisc")
library(sfsmisc)
?diagDA
and that help page mentions that these are just improvements of
earlier code of Sandrine Dudoit and Jane Fridlyand
Martin Maechler, ETH Zurich
ac> Thanks
ac> --- Weiwei Shi <helprhelp at gmail.com> wrote:
>> supclust
>>
>> On 11/9/07, array chip <arrayprofile at yahoo.com> wrote: >
>> Hi is there a package for diagonal linear discriminant >
>> analysis (diagonal LDA)?
>> >
>> > Thanks
>> >
>> > ______________________________________________ >
>> R-help at r-project.org mailing list >
>> https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do
>> read the posting guide
>> http://www.R-project.org/posting-guide.html > and provide
>> commented, minimal, self-contained, reproducible code.
>> >
>>
>>
>> --
>> Weiwei Shi, Ph.D Research Scientist GeneGO, Inc.
>>
>> "Did you always know?" "No, I did not. But I
>> believed..." ---Matrix III
>>
____________________________________________________________________________________
ac> Be a better sports nut! Let your teams follow you with
ac> Yahoo Mobile. Try it now.
ac> http://mobile.yahoo.com/sports;_ylt=At9_qDKvtAbMuh1G1SQtBI7ntAcJ
ac> ______________________________________________
ac> R-help at r-project.org mailing list
ac> https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do
ac> read the posting guide
ac> http://www.R-project.org/posting-guide.html and provide
ac> commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list