[R] strange `nls' behaviour

Duncan Murdoch murdoch at stats.uwo.ca
Mon Nov 12 17:09:21 CET 2007


On 11/12/2007 9:14 AM, Joerg van den Hoff wrote:
> On Mon, Nov 12, 2007 at 07:36:34AM -0500, Duncan Murdoch wrote:
>> On 11/12/2007 6:51 AM, Joerg van den Hoff wrote:
>> >I initially thought, this should better be posted to r-devel
>> >but alas! no response. 
>> 
>> I think the reason there was no response is that your example is too 
>> complicated.  You're doing a lot of strange things (fitfunc as a result 
>> of deriv, using as.name, as.call, as.formula, etc.)  You should simplify 
> 
> thanks for the feedback.
> 
> concerning  "lot  of  strange  things":  OK.  I  thought the
> context might be important ("why, for heaven's sake  do  you
> want  to  do  this!?"), but, then, maybe not. so the easiest
> way to trigger a similar (not the  identical)  behaviour  is
> something like
> 
> f <- function (n) {
>    #---------------------------------------------------------
>    #define n data points for a (hardcoded) model:
>    #-----------
>    x <- seq(0, 5, length  = n)
>    y <- 2 * exp(-1*x) + 2; 
>    y <- rnorm(y,y, 0.01*y)
> 
>    #the model (same as the above hardcoded one):
>    model <- y ~ a * exp (-b*x) + c
> 
>    #call nls as usual:
>    res1 <- try(nls(model, start = c(a=2, b=1, c=2)))
> 
>    #call it a bit differently:
>    res2 <- nls(y ~ eval(model[[3]]), start = c(a=2, b=1, c=2))
> 
>    list(res1 = res1, res2 = res2)
>    #---------------------------------------------------------
> }

I'd say the problem is relying on the default for the envir parameter to 
eval.  It's reasonable to expect nls to set things up so that terms in 
the model formula are taken from the right place, but when your model 
formula is playing with evaluation, you should be very careful to make 
sure the evaluation takes place in the right context.

The default for envir is "parent.frame()", and that can't be right: that 
will see local variables in whatever function called it, so if one of 
them has a variable called "model", you'll subscript it.

If I were trying to do what you're doing, I would construct the formula 
before the call to nls, and pass that.  I.e. something like the 
following silly code:

model2 <- model
model2[[3]] <- model[[3]] # The eval() is implicit
res2 <- nls(model2, start = c(a=2, b=1, c=2))

If you really want to put eval() in a formula, then I can't see how you 
could avoid an explicit specification of the envir parameter.  So I'd 
call this a bug in your code.

Duncan Murdoch


> this is without all the overhead of my first example and now
> (since not quite the same) the problem  arises  at  n  ==  3
> where  the  fit  can't  really  procede  (there  are  also 3
> parameters -- the first example was more  relevant  in  this
> respect)  but  anyway  the  second nls-call does not procede
> beyond the parsing phase of `model.frame'.
> 
> so,  I  can't  see  room for a real bug in my code, but very
> well a chance that I misuse `nls'  (i.e.  not  understanding
> what really is tolerable for the `model' argument of `nls').
> but  if the latter is not the case, I would think there is a
> bug in `nls'  (or,  actually,  rather  in  `model.frame'  or
> whatever)  when  parsing  the  nls call.


> 
> 
>> it down to isolate the bug.  Thats a lot of work, but you're the one in 
>> the best position to do it.  I'd say there's at least an even chance 
>> that the bug is in your code rather than in nls().
>> 
>> And 2.5.0 *is* ancient; please confirm the bug exists in R-patched if it 
>> turns out to be an R bug.
> 
> if  need  be,  I'll  do  that  (if  I  get it compiled under
> macosX). but assuming  that  you  have  R-patched  installed
> anyway, I would appreciate if you would copy the new example
> above or the old one  below  to  your  R-  prompt  and  see,
> whether  it  crashes  with  the same error message if called
> with the special number of data points (3 for the new, 5 for
> the  old  example)?  and  if  so,  maybe  bring  this to the
> attention of d. bates?
> 
> 
> j. van den hoff
>> 
>> Duncan Murdoch
>> 
> 
>> 
>> 
>> 
>> so  I  try  it  here.  sory  for  the
>> >lengthy explanation but it seems unavoidable. to quickly see
>> >the problem simply copy the litte example below and execute
>> >
>> >f(n=5)
>> >
>> >which  crashes. called with n !=  5 (and of course n>3 since
>> >there are 3 parameters in the model...) everything is as  it
>> >should be.
>> >
>> >in detail:
>> >I  stumbled over the follwing _very_ strange behaviour/error
>> >when using `nls' which  I'm  tempted  (despite  the  implied
>> >"dangers") to call a bug:
>> >
>> >I've  written a driver for `nls' which allows specifying the
>> >model and the data vectors using arbitrary  symbols.   these
>> >are  internally  mapped  to  consistent names, which poses a
>> >slight complication when using `deriv' to  provide  analytic
>> >derivatives. the following fragment gives the idea:
>> >
>> >#-----------------------------------------
>> >f <- function(n = 4) {
>> >
>> >   x <- seq(0, 5, length  = n)
>> >
>> >   y <- 2 * exp(-1*x) + 2; 
>> >   y <- rnorm(y,y, 0.01*y)
>> >
>> >   model <- y ~ a * exp (-b*x) + c
>> >
>> >   fitfunc <- deriv(model[[3]], c("a", "b", "c"), c("a", "b", "c", "x"))
>> >
>> >   #"standard" call of nls:
>> >   res1 <- nls(y ~ fitfunc(a, b, c, x), start = c(a=1, b=1, c=1))
>> >
>> >   call.fitfunc <- 
>> >   c(list(fitfunc), as.name("a"), as.name("b"), as.name("c"), as.name("x"))
>> >   call.fitfunc <- as.call(call.fitfunc)
>> >   frml <- as.formula("y ~ eval(call.fitfunc)")
>> >
>> >   #"computed" call of nls:
>> >   res2 <- nls(frml, start = c(a=1, b=1, c=1))
>> >
>> >   list(res1 = res1, res2 = res2)
>> >}
>> >#-----------------------------------------
>> >
>> >the  argument  `n'   defines  the number of (simulated) data
>> >points x/y which are going to be fitted by some model ( here
>> >y ~ a*exp(-b*x)+c )
>> >
>> >the first call to `nls' is the standard way of calling `nls'
>> >when knowing all the variable and parameter names.
>> >
>> >the second call (yielding `res2') uses a constructed formula
>> >in `frml' (which in this example is of course not necessary,
>> >but  in  the general case 'a,b,c,x,y' are not a priori known
>> >names).
>> >
>> >now, here is the problem: the call
>> >
>> >f(4)
>> >
>> >runs fine/consistently, as does every call with n > 5.
>> >
>> >BUT: for n = 5 (i.e. issuing f(5))
>> >
>> >the second fit leads to the error message:
>> >
>> >"Error in model.frame(formula, rownames, variables, varnames, extras, 
>> >extranames,  : invalid type (language) for variable 'call.fitfunc'"
>> >
>> >I  cornered  this  to a spot in `nls' where a model frame is
>> >constructed in variable `mf'.  the parsing/constructing here
>> >seems  simply  to  be messed up for n = 5: `call.fitfunc' is
>> >interpreted as variable.
>> >
>> >I,  moreover, empirically noted that the problem occurs when
>> >the total number of  parameters  plus  dependent/independent
>> >variables  equals  the number of data points (in the present
>> >example a,b,c,x,y).
>> >
>> >so it is not the 'magic' number of 5 but rather the identity
>> >of data vector length and number of parameters+variables  in
>> >the model which leads to the problem.
>> >
>> >this  is  with  2.5.0  (which  hopefully  is  not considered
>> >ancient) and MacOSX 10.4.10.
>> >
>> >any ideas?
>> >
>> >thanks
>> >
>> >joerg
>> >
>> >______________________________________________
>> >R-help at r-project.org mailing list
>> >https://stat.ethz.ch/mailman/listinfo/r-help
>> >PLEASE do read the posting guide 
>> >http://www.R-project.org/posting-guide.html
>> >and provide commented, minimal, self-contained, reproducible code.
>>



More information about the R-help mailing list