[R] Likelihood returning inf values to optim(L-BFGS-B) other options?
Ravi Varadhan
rvaradhan at jhmi.edu
Thu Apr 5 15:27:46 CEST 2007
Hi,
In your code, the variables x (which I assume is the observed data), Tvec,
and flag are not passed to the function as arguments. This could be a
potential problem. Another problem could be that you have to use "negative"
log-likelihood function as input to optim, since by default it "minimizes"
the function, whereas you are interested in finding the argmax of
log-likelihood. So, in your function you should return (-ll) instead of ll.
If the above strategies don't work, I would try different initial values (it
would be best if you have a data-driven strategy for picking a starting
value) and different optimization methods (e.g. conjugate gradient with
"Polak-Ribiere" steplength option, Nelder-Mead, etc.).
Ravi.
----------------------------------------------------------------------------
-------
Ravi Varadhan, Ph.D.
Assistant Professor, The Center on Aging and Health
Division of Geriatric Medicine and Gerontology
Johns Hopkins University
Ph: (410) 502-2619
Fax: (410) 614-9625
Email: rvaradhan at jhmi.edu
Webpage: http://www.jhsph.edu/agingandhealth/People/Faculty/Varadhan.html
----------------------------------------------------------------------------
--------
-----Original Message-----
From: r-help-bounces at stat.math.ethz.ch
[mailto:r-help-bounces at stat.math.ethz.ch] On Behalf Of r at micom-solutions.de
Sent: Thursday, April 05, 2007 6:12 AM
To: r-help at stat.math.ethz.ch
Subject: [R] Likelihood returning inf values to optim(L-BFGS-B) other
options?
Dear R-help list,
I am working on an optimization with R by evaluating a likelihood
function that contains lots of Gamma calculations (BGNBD: Hardie Fader
Lee 2005 Management Science). Since I am forced to implement lower
bounds for the four parameters included in the model, I chose the
optim() function mith L-BFGS-B as method. But the likelihood often
returns inf-values which L-BFGS-B can't deal with.
Are there any other options to implement an optimization algorithm
with R accounting for lower bounds and a four parameter-space?
Here is the error message I receive (german):
--
>
out=optim(c(.1,.1,.1,.1),fn,method="L-BFGS-B",lower=c(.0001,.0001,.0001,.000
1,.0001))
Fehler in optim(c(0.1, 0.1, 0.1, 0.1), fn, method = "L-BFGS-B", lower
= c(1e-04, :
L-BFGS-B benötigt endliche Werte von 'fn'
Zusätzlich: Es gab 50 oder mehr Warnungen (Anzeige der ersten 50 mit
warnings())
--
And this is the likelihood function:
--
fn<-function(p) {
A1=(gamma(p[1]+x)*p[2]^p[1])/(gamma(p[1]))
A2=(gamma(p[3]+p[4])*gamma(p[4]+x))/(gamma(p[4])*gamma(p[3]+p[4]+x))
A3=(1/(p[2]+Tvec))^(p[1]+x)
A4=(p[3]/(p[4]+x-1))*((1/(p[2]+t_x))^(p[1]+x))
ll=sum(log(A1*A2*(A3+flag*A4)))
return(ll)
}
Thank you very much for your help in advance!
Best regards,
Michael
______________________________________________
R-help at stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list