[R] HPDinterval problem
Seyed Reza Jafarzadeh
srjafarzadeh at gmail.com
Tue Apr 3 02:26:50 CEST 2007
Hi,
Can anyone tell me why I am not getting the correct intervals for
fixed effect terms for the following generalized linear mixed model
from HPDinterval:
> sessionInfo()
R version 2.4.1 (2006-12-18)
i386-pc-mingw32
locale:
LC_COLLATE=English_United States.1252;LC_CTYPE=English_United
States.1252;LC_MONETARY=English_United
States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252
attached base packages:
[1] "stats" "graphics" "grDevices" "utils" "datasets"
"methods" "base"
other attached packages:
coda lme4 Matrix lattice
"0.10-7" "0.9975-13" "0.9975-11" "0.14-17"
> summary(o[1:1392])
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 0.0 1.0 2.3 3.0 30.0
> summary(pv1o[1:1392])
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 1.000 2.322 3.000 30.000
> summary(pv2o[1:1392])
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 1.000 2.315 3.000 30.000
> summary(pv1toa[1:1392])
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 4.00 7.00 11.99 15.00 108.00
> summary(pv2toa[1:1392])
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 4.00 7.00 11.94 15.00 108.00
> m1.16 <- lmer(o ~ pv1o + pv2o + pv1toa + pv2toa + sesblf + (pv1o | prov) + (pv1toa | prov) + (pv1o | pm) + (pv1toa | pm), data = mydata[1:1392,], family = quasipoisson)
> m1.16
Generalized linear mixed model fit using Laplace
Formula: o ~ pv1o + pv2o + pv1toa + pv2toa + sesblf + (pv1o | prov) +
(pv1toa | prov) + (pv1o | pm) + (pv1toa | pm)
Data: mydata[1:1392, ]
Family: quasipoisson(log link)
AIC BIC logLik deviance
2285 2390 -1123 2245
Random effects:
Groups Name Variance Std.Dev. Corr
prov (Intercept) 0.68110734 0.825292
pv1o 0.01182079 0.108723 -0.927
prov (Intercept) 0.09896363 0.314585
pv1toa 0.00029002 0.017030 -0.182
pm (Intercept) 0.05023998 0.224143
pv1o 0.00234292 0.048404 -0.789
pm (Intercept) 0.01918719 0.138518
pv1toa 0.00011984 0.010947 -0.086
Residual 1.54376281 1.242483
number of obs: 1392, groups: prov, 24; prov, 24; pm, 12; pm, 12
Fixed effects:
Estimate Std. Error t value
(Intercept) -0.372258 0.233326 -1.595
pv1o 0.151591 0.028778 5.268
pv2o 0.029524 0.007247 4.074
pv1toa 0.025669 0.006221 4.126
pv2toa 0.004344 0.003755 1.157
sesblf2 0.074507 0.186258 0.400
sesblf3 -0.037145 0.188021 -0.198
sesblf4 0.155999 0.187175 0.833
Correlation of Fixed Effects:
(Intr) pv1o pv2o pv1toa pv2toa ssblf2 ssblf3
pv1o -0.638
pv2o -0.036 -0.099
pv1toa -0.073 -0.050 -0.029
pv2toa -0.043 -0.035 -0.156 -0.458
sesblf2 -0.411 -0.009 0.040 0.002 0.012
sesblf3 -0.412 -0.005 0.039 -0.002 0.037 0.516
sesblf4 -0.413 -0.006 0.044 0.003 0.028 0.513 0.514
> s1.16 <- mcmcsamp(m1.16, n = 100000)
> HPDinterval(s1.16)
lower upper
(Intercept) -0.372258256 -0.372258256
pv1o 0.151590854 0.151590854
pv2o 0.029524315 0.029524315
pv1toa 0.025668727 0.025668727
pv2toa 0.004343653 0.004343653
sesblf2 0.074507427 0.074507427
sesblf3 -0.037144631 -0.037144631
sesblf4 0.155998825 0.155998825
log(prov.(In)) -1.547675380 -0.345723770
log(prov.pv1o) -5.610048117 -4.407086692
atanh(prv.(I).pv1) -2.509960360 -1.663905782
log(prov.(In)) -4.030294678 -2.823797787
log(prov.pv1t) -9.370781684 -8.165302813
atanh(prv.(I).pv1) -1.146944941 -0.289800204
log(pm.(In)) -4.420270387 -2.597929912
log(pm.pv1o) -7.227500164 -5.401277510
atanh(pm.(I).pv1) -2.172644329 -0.886969199
log(pm.(In)) -6.071675906 -4.252728431
log(pm.pv1t) -10.230334351 -8.403082501
atanh(pm.(I).pv1) -0.810182999 0.503799332
attr(,"Probability")
[1] 0.95
If I use only one grouping factor (either "prov" or "pm") in the
model, it looks to be ok, but it doesn't seem right with two.
Thanks,
Reza
More information about the R-help
mailing list