[R] lme4/Matrix: Call to .Call("mer_update_y"...) and LMEoptimize gives unexpected side effect...
Spencer Graves
spencer.graves at pdf.com
Tue Mar 21 03:27:05 CET 2006
You provided the code for "LMEoptimize" and "lmerControl", but your
data.frame Semiconductor was "not found". Therefore, I could not
replicate your problem. However, some external functions use their
inputs for temporary storage or even to return values. This was smart
programming decades ago when programmer time was much cheaper than
memory. Today, I regard it as a user hostile feature of some code.
hope this helps.
spencer graves
> sessionInfo()
R version 2.2.1, 2005-12-20, i386-pc-mingw32
attached base packages:
[1] "methods" "stats" "graphics" "grDevices" "utils" "datasets"
[7] "base"
other attached packages:
lme4 lattice Matrix
"0.995-2" "0.12-11" "0.995-5"
>
Søren Højsgaard wrote:
> Dear all
> I want to compute Monte Carlo p-values in lmer-models based on sampled data sets. To speed up calculations, I've tried to use internal functions from the Matrix package (as suggested ealier on the list by Doug Bates).
>
> So I did:
>
> fm2 <- lmer(resistance ~ ET + position + (1|Grp), Semiconductor,method='ML')
> simdata<-simulate(fm2,nsim=1)
> ynew <- simdata[,1]
>
> mer <- fm2
> .Call("mer_update_y", mer, ynew, PACKAGE = "Matrix")
> mer1u <- LMEoptimize(mer, lmerControl(mer))
>
> What puzzles me is that this call alters my original model fm2 as some kind of side effect. In fact, after the call fm2 is the same as mer1u. Is this side effect intentional and is it possible to avoid?
>
> A detail is that "LMEoptmize" and "LMEoptimize<-" are not exported from the namespace in Matrix, so I simply copied the LMEoptimize function and made it an ordinary function as shown below.
>
> Thanks in advance
> Søren
>
>
>
> LMEoptimize <- function(x, value)
> {
> if (value$msMaxIter < 1) return(x)
> nc <- x at nc
> constr <- unlist(lapply(nc, function(k) 1:((k*(k+1))/2) <= k))
> fn <- function(pars)
> deviance(.Call("mer_coefGets", x, pars, 2, PACKAGE = "Matrix"))
> gr <- if (value$gradient)
> function(pars) {
> if (!isTRUE(all.equal(pars,
> .Call("mer_coef", x,
> 2, PACKAGE = "Matrix"))))
> .Call("mer_coefGets", x, pars, 2, PACKAGE = "Matrix")
> .Call("mer_gradient", x, 2, PACKAGE = "Matrix")
> }
> else NULL
> optimRes <- nlminb(.Call("mer_coef", x, 2, PACKAGE = "Matrix"),
> fn, gr,
> lower = ifelse(constr, 5e-10, -Inf),
> control = list(iter.max = value$msMaxIter,
> trace = as.integer(value$msVerbose)))
> .Call("mer_coefGets", x, optimRes$par, 2, PACKAGE = "Matrix")
> if (optimRes$convergence != 0) {
> warning(paste("nlminb returned message",
> optimRes$message,"\n"))
> }
> return(x)
> }
>
> lmerControl <-
> function(maxIter = 200, # used in ../src/lmer.c only
> tolerance = sqrt(.Machine$double.eps),# ditto
> msMaxIter = 200,
> ## msTol = sqrt(.Machine$double.eps),
> ## FIXME: should be able to pass tolerances to nlminb()
> msVerbose = getOption("verbose"),
> niterEM = 15,
> EMverbose = getOption("verbose"),
> PQLmaxIt = 30,# FIXME: unused; PQL currently uses 'maxIter' instead
> gradient = TRUE,
> Hessian = FALSE # unused _FIXME_
> )
> {
> list(maxIter = as.integer(maxIter),
> tolerance = as.double(tolerance),
> msMaxIter = as.integer(msMaxIter),
> ## msTol = as.double(msTol),
> msVerbose = as.integer(msVerbose),# "integer" on purpose
> niterEM = as.integer(niterEM),
> EMverbose = as.logical(EMverbose),
> PQLmaxIt = as.integer(PQLmaxIt),
> gradient = as.logical(gradient),
> Hessian = as.logical(Hessian))
> }
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
More information about the R-help
mailing list