[R] Cross validation, one more time (hopefully the last)
Trevor Wiens
twiens at interbaun.com
Thu Mar 17 05:31:01 CET 2005
On Wed, 16 Mar 2005 17:59:01 -0700
Trevor Wiens <twiens at interbaun.com> wrote:
> I apologize for posting on this question again, but unfortunately, I don't have and can't get access to MASS for at least three weeks. I have found some code on the web however which implements the prediction error algorithm in cv.glm.
>
> http://www.bioconductor.org/workshops/NGFN03/modelsel-exercise.pdf
>
> Now I've tried to adapt it to my purposes, but since I'm not deeply familiar with R programming, I don't know why it doesn't work. Now checking the r-help list faq it seems this is an appropriate question.
>
OK. I've determined why that didn't work. But I'm still unsure if I've implemented the algorithm correctly. Any suggestions for testing would be appreciated. The corrected function is attached.
Thanks for your assistance.
------------------------
logcv <- function(mdata, formula, rvar, fvar) {
require(Hmisc)
# determine index of variables
rpos <- match(rvar, names(mdata))
fpos <- match(fvar, names(mdata))
# sort by fold variable
sorted <- mdata[order(mdata[[fpos]]), ]
# get fold values and count for each group
vardesc <- describe(sorted[[fpos]])$values
fvarlist <- as.integer(dimnames(vardesc)[[2]])
k <- length(fvarlist)
countlist <- vardesc[1,1]
for (i in 2:k)
{
countlist[i] <- vardesc[1,i]
}
n <- length(sorted[[fpos]])
# fit to all the mdata
fit.all <- glm(formula, sorted, family=binomial)
pred.all <- ifelse( predict(fit.all, type="response") < 0.5, 0, 1)
#setup
pred.c <- list()
error.i <- vector(length=k)
for (i in 1:k)
{
fit.i <- glm(formula, subset(sorted, sorted[[fpos]] != fvarlist[i]), family=binomial)
pred.i <- ifelse(predict(fit.i, newdata=subset(sorted, sorted[[fpos]] == fvarlist[i]), type="response") < 0.5, 0, 1)
pred.c[[i]] = pred.i
pred.all.i <- ifelse(predict(fit.i, newdata=sorted, type="response") < 0.5, 0, 1)
error.i[i] <- sum(sorted[[rpos]] != pred.all.i)/n
}
pred.cc <- unlist(pred.c)
delta.cv.k <- sum(sorted[[rpos]] != pred.cc)/n
p.k <- countlist/n
delta.app <- mean(sorted[[rpos]] != pred.all)/n
delta.acv.k <- delta.cv.k + delta.app - sum(p.k*error.i)
return(delta.acv.k)
}
----------
T
--
Trevor Wiens
twiens at interbaun.com
More information about the R-help
mailing list