[R] aov or t-test applied on all variables of a data.frame
Peter Dalgaard
p.dalgaard at biostat.ku.dk
Fri Mar 11 16:47:27 CET 2005
Christoph Lehmann <christoph.lehmann at gmx.ch> writes:
> Hi
> I have a data.frame with say 10 continuous variables and one grouping
> factor (say 3 levels)
>
> how can I easily (without loops) apply for each continous variable
> e.g. an aov, with the grouping factor as my factor (or if the grouping
> factor has 2 levels, eg. a t-test)
>
> thanks for a hint
Generally something with lapply or sapply, e.g.
lapply(dd[-1], function(y) t.test(y~dd$V1))
$V2
Welch Two Sample t-test
data: y by dd$V1
t = 1.5465, df = 39.396, p-value = 0.13
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.02500802 0.18764439
sample estimates:
mean in group 1 mean in group 2
1.096818 1.015500
...etc, one for each of V2..V8
or, in a more compact form
sapply(dd[-1], function(y) t.test(y~dd$V1))[1:3,]
V2 V3 V4 V5 V6 V7
statistic 1.546456 1.008719 0.08158578 -0.2456436 -0.872376 -1.405966
parameter 39.39554 36.30778 39.70288 36.99061 36.99944 35.97947
p.value 0.1299909 0.3197851 0.935386 0.807316 0.3886296 0.1683118
V8
statistic -0.6724112
parameter 29.65156
p.value 0.5065284
or (this'll get the confidence intervals and estimates printed sensibly).
sapply(dd[-1], function(y)unlist(t.test(y~dd$V1)[1:5]))
--
O__ ---- Peter Dalgaard Blegdamsvej 3
c/ /'_ --- Dept. of Biostatistics 2200 Cph. N
(*) \(*) -- University of Copenhagen Denmark Ph: (+45) 35327918
~~~~~~~~~~ - (p.dalgaard at biostat.ku.dk) FAX: (+45) 35327907
More information about the R-help
mailing list