[R] multinom and contrasts
John Fox
jfox at mcmaster.ca
Thu Apr 14 02:29:25 CEST 2005
Dear chip,
The difference is small and is due to computational error.
Your example:
> max(abs(zz[1:10,] - yy[1:10,]))
[1] 2.207080e-05
Tightening the convergence tolerance in multinom() eliminates the
difference:
> options(contrasts=c('contr.treatment','contr.poly'))
> xx<-multinom(Type~Infl+Cont,data=housing[-c(1,10,11,22,25,30),],
reltol=1.0e-12)
# weights: 20 (12 variable)
initial value 91.495428
iter 10 value 91.124526
final value 91.124523
converged
> yy<-predict(xx,type='probs')
> options(contrasts=c('contr.helmert','contr.poly'))
> xx<-multinom(Type~Infl+Cont,data=housing[-c(1,10,11,22,25,30),],
reltol=1.0e-12)
# weights: 20 (12 variable)
initial value 91.495428
iter 10 value 91.125287
iter 20 value 91.124523
iter 20 value 91.124523
iter 20 value 91.124523
final value 91.124523
converged
> zz<-predict(xx,type='probs')
> max(abs(zz[1:10,] - yy[1:10,]))
[1] 1.530021e-08
I hope this helps,
John
--------------------------------
John Fox
Department of Sociology
McMaster University
Hamilton, Ontario
Canada L8S 4M4
905-525-9140x23604
http://socserv.mcmaster.ca/jfox
--------------------------------
> -----Original Message-----
> From: r-help-bounces at stat.math.ethz.ch
> [mailto:r-help-bounces at stat.math.ethz.ch] On Behalf Of array chip
> Sent: Wednesday, April 13, 2005 6:26 PM
> To: R-help at stat.math.ethz.ch
> Subject: [R] multinom and contrasts
>
> Hi,
>
> I found that using different contrasts (e.g.
> contr.helmert vs. contr.treatment) will generate different
> fitted probabilities from multinomial logistic regression
> using multinom(); while the fitted probabilities from binary
> logistic regression seem to be the same. Why is that? and for
> multinomial logisitc regression, what contrast should be
> used? I guess it's helmert?
>
> here is an example script:
>
> library(MASS)
> library(nnet)
>
> #### multinomial logistic
> options(contrasts=c('contr.treatment','contr.poly'))
> xx<-multinom(Type~Infl+Cont,data=housing[-c(1,10,11,22,25,30),])
> yy<-predict(xx,type='probs')
> yy[1:10,]
>
> options(contrasts=c('contr.helmert','contr.poly'))
> xx<-multinom(Type~Infl+Cont,data=housing[-c(1,10,11,22,25,30),])
> zz<-predict(xx,type='probs')
> zz[1:10,]
>
>
> ##### binary logistic
> options(contrasts=c('contr.treatment','contr.poly'))
> obj.glm<-glm(Cont~Infl+Type,family='binomial',data=housing[-c(
1,10,11,22,25,30),])
> yy<-predict(xx,type='response')
>
> options(contrasts=c('contr.helmert','contr.poly'))
> obj.glm<-glm(Cont~Infl+Type,family='binomial',data=housing[-c(
1,10,11,22,25,30),])
> zz<-predict(xx,type='response')
>
> Thanks
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide!
> http://www.R-project.org/posting-guide.html
More information about the R-help
mailing list