[BioC] Limma : Single Channel experiment design matrix
Koran [guest]
guest at bioconductor.org
Fri Mar 7 09:49:23 CET 2014
Dear All,
I have a question regarding the way to analyse single channel experiment (several groups).
In a first approach, I followed the limma user's guide for several groups (chapter 9.3), and used a contrast
matrix to make the comparison between two groups among all groups.
I also followed another approach : I take a sub expression set with only the two groups of samples I need to compare, and then follow the two groups approach (chapter 9.2)
If fold change remains the same, the p.value of moderated t-test is different :
for the "chapter 9.3" I get this (topTable):
logFC AveExpr t P.Value adj.P.Val B
NM_013409 4.804450 9.351186 63.46856 5.198462e-32 2.225306e-27 60.42083
NM_170685 3.327586 7.476924 43.29198 2.292074e-27 4.102931e-23 51.64301
NM_021995 3.598441 8.731876 42.94068 2.875416e-27 4.102931e-23 51.44328
NM_000014 2.686684 11.968353 38.61755 5.481149e-26 4.817512e-22 48.80565
NM_001747 2.727227 8.834094 38.33543 6.716748e-26 4.817512e-22 48.62109
for the "chapter 9.2", I get this topTable :
logFC AveExpr t P.Value adj.P.Val B
NM_013409 4.804450 10.238329 70.14768 7.077519e-15 2.709195e-10 23.07593
NM_015464 3.868533 9.850459 66.20398 1.265772e-14 2.709195e-10 22.72371
NM_000119 -3.322662 11.608264 -61.31983 2.733108e-14 3.899871e-10 22.22951
BC025320 2.908061 7.112412 56.61705 6.089619e-14 6.516958e-10 21.68233
NM_000014 2.686684 11.682645 53.85715 1.005598e-13 8.609327e-10 21.32326
NM_170685 3.327586 7.826983 51.22412 1.662803e-13 1.086579e-09 20.95091
Of course, logFC remains the same, Avg Expression are obviously differents, but the p.value are differents.
So I was wondering why ? and wich is the best approach to choose since one give results with more statistical power ?
Thank you for your kind answers.
Koran
-- output of sessionInfo():
R version 3.0.2 (2013-09-25)
Platform: x86_64-apple-darwin10.8.0 (64-bit)
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices datasets utils methods base
other attached packages:
[1] RColorBrewer_1.0-5 R.basic_0.53.0 R.utils_1.29.8 R.oo_1.18.0 R.methodsS3_1.6.1
[6] plotrix_3.5-3 multicore_0.1-7 pvclust_1.2-2 arrayQualityMetrics_3.18.0 impute_1.36.0
[11] marray_1.40.0 limma_3.18.13 fortunes_1.5-2 snowfall_1.84-6 snow_0.3-13
loaded via a namespace (and not attached):
[1] affy_1.40.0 affyio_1.30.0 affyPLM_1.38.0 annotate_1.40.1 AnnotationDbi_1.24.0 beadarray_2.12.0
[7] BeadDataPackR_1.14.0 Biobase_2.22.0 BiocGenerics_0.8.0 BiocInstaller_1.12.0 Biostrings_2.30.1 Cairo_1.5-5
[13] cluster_1.14.4 colorspace_1.2-4 DBI_0.2-7 Formula_1.1-1 gcrma_2.34.0 genefilter_1.44.0
[19] grid_3.0.2 Hmisc_3.14-2 hwriter_1.3 IRanges_1.20.6 KernSmooth_2.23-10 lattice_0.20-27
[25] latticeExtra_0.6-26 parallel_3.0.2 plyr_1.8.1 preprocessCore_1.24.0 Rcpp_0.11.0 reshape2_1.2.2
[31] RSQLite_0.11.4 setRNG_2011.11-2 splines_3.0.2 stats4_3.0.2 stringr_0.6.2 survival_2.37-7
[37] SVGAnnotation_0.93-1 tools_3.0.2 vsn_3.30.0 XML_3.95-0.2 xtable_1.7-1 XVector_0.2.0
[43] zlibbioc_1.8.0
--
Sent via the guest posting facility at bioconductor.org.
More information about the Bioconductor
mailing list