[BioC] paired design, LIMMA

Gordon Smyth smyth at wehi.EDU.AU
Mon Apr 23 09:37:10 CEST 2007


>[BioC] paired design, LIMMA
>Lev Soinov lev_embl1 at yahoo.co.uk
>Fri Apr 20 12:37:40 CEST 2007
>
>Dear List,
>
>   I am learning about a simple paired design in LIMMA and am 
> playing with a small dataset of 6 Affymetrix barley chips, 3 
> treated and 3 untreated. I have some problems with interpreting the 
> results and would be grateful for any comments/suggestions.
>   Experiment: sample pairs (treated & untreated) were prepared in 
> three biological replicates, using the same protocol (same 
> treatments, etc.) but separately from each other (in different times).
>   For all genes with negative fold changes, adj. p values for 
> moderated t statistics appear to be higher than 0.1 (the smallest 
> adj. p value among down-regulated genes is 0.139). Besides, only 
> two down-regulated probes have abs(logFC)>log2(1.5).
>
>   Questions:
>   1. From your experience, is the fact that among significantly 
> regulated genes I only get up-regulated ones an indication of a 
> problem with the data (log_intensity plots and boxplots did not 
> flag up any significant problems)?

Well, if this is biologically infeasible, then it would seem to 
indicate a problem.

>   2. With moderated t-statistics I am getting no significantly 
> down-regulated genes but with ordinary t-statistics I get more than 
> 4000 down-regulated probes with adj. p <0.05. Is this common?

Ordinary t-tests typically throw up a lot of spuriously DE genes, 
which have very small standard deviations, low fold changes and low 
expression levels.

The difference here between moderated and ordinary t-test suggests to 
me that all the apparently down-regulated probes are in the lower 
expression range. This does suggest to me a problem with the data. A 
fitted model MA-plot might throw some light on the situation.

Best wishes
Gordon

>   I also wonder why the difference between adj. p values for 
> moderated and ordinary t statistics is so huge, i.e. moderated adj. 
> p values for down-regulated genes are all higher than 0.1, while 
> ~4000 down-regulated probes have ordinary adj.p<0.05.
>
>   With kind regards,
>   Lev.
>   Bioinformatician, UK.
>
>   I am using the following code (as described in the LIMMA user 
> guide, p.40, 8.3 Paired Samples):
>   memory.limit(size = 2048)
>   data<-ReadAffy(widget=TRUE)
>   sampleNames(data)
>   temp<-rma(data)
>   targets <- readTargets("Targets.txt")
>   Pair <- factor(targets$Pair)
>   Treat <- factor(targets$Treatment, levels=c("A","B"))
>   design <- model.matrix(~Pair+Treat)
>   fit_pair <- lmFit(temp, design)
>   fit_pair <- eBayes(fit_pair)
>   topTable(fit_pair, coef="TreatB")
>
>   My targets file is:
>   FileName         Pair      Treatment
>   Bar18   1          A
>   Bar19   1          B
>   Bar20   2          A
>   Bar21   2          B
>   Bar22   3          A
>   Bar23   3          B
>
>
>Ordinary t statistics for paired test were calculated using:
>
> >tstat.ord <- fit_pair$coef / fit_pair$stdev.unscaled / fit_pair$sigma
>
> >p.value.ord <- 2 * pt( abs(tstat.ord), df=fit_pair$df.residual, 
> lower.tail=FALSE)
>
> >pvalue.ord.adj <- p.adjust(p.value.ord, method="fdr")
>
>   My data and session info:
>   >data
>   AffyBatch object
>   size of arrays=712x712 features (23770 kb)
>   cdf=Barley1 (22840 affyids)
>   number of samples=6
>   number of genes=22840
>   annotation=barley1
>   > sessionInfo()
>   R version 2.4.1 (2006-12-18)
>   i386-pc-mingw32
>   attached base packages:
>   [1] "tcltk"     "tools"     "stats"     "graphics"  "grDevices" 
> "utils"     "datasets"  "methods"   "base"
>   other attached packages:
>    barley1cdf   tkWidgets      DynDoc 
> widgetTools       limma        affy      affyio     Biobase
>      "1.14.0"    "1.12.1"    "1.12.0"    "1.10.0"     "2.9.8" 
> "1.12.2"     "1.2.0"    "1.12.2"
>
>   There are NO significantly down-regulated genes, see the TreatB 
> column below:
>   > results<-decideTests(fit_pair)
>   > summary(results)
>      (Intercept) Pair2 Pair3 TreatB
>   -1           0   407   161      0
>   0            4 21977 22453  22819
>   1        22836   456   226     21
>
>   topTable (probe IDs are removed for brevity):
>   ID        logFC   AveExpr           t           P.Value 
>   adj.P.Val          B
>   1          1.4       5.9       15.2     0.0000002       0.003   5.3
>   2          6.1       6.7       14.6     0.0000003       0.003   5.1
>   3          3.1       6.4       14.3     0.0000003       0.003   5.0
>   4          1.2       7.6       12.6     0.0000010       0.005   4.6
>   5          3.0       7.7       12.4     0.0000011       0.005   4.5
>   6          1.5       4.6       11.7     0.0000017       0.007   4.3
>   7          1.9       6.7       11.1     0.0000026       0.007   4.0
>   8          1.0       4.6       11.1     0.0000026       0.007   4.0
>   9          3.3       5.2       11.0     0.0000029       0.007   4.0
>   10        1.8       7.5       10.1     0.0000055       0.013   3.6
>   11        1.5       6.4       9.5       0.0000089       0.018   3.3
>   12        1.1       8.2       9.4       0.0000097       0.018   3.2
>   13        3.5       6.4       8.4       0.0000223       0.039   2.7
>   14        1.0       4.4       8.3       0.0000256       0.040   2.6
>   15        1.1       6.4       8.3       0.0000260       0.040   2.6
>   16        1.8       4.6       8.1       0.0000290       0.041   2.5
>   17        0.9       9.4       8.0       0.0000345       0.044   2.4
>   18        0.9       6.9       7.9       0.0000349       0.044   2.3
>   19        4.5       7.2       7.9       0.0000372       0.045   2.3
>   20        1.0       7.4       7.8       0.0000397       0.045   2.3
>   21        0.8       7.0       7.7       0.0000437       0.048   2.2
>   22        2.1       3.4       7.6       0.0000484       0.050   2.1
>   23        0.9       6.5       7.2       0.0000701       0.070   1.8
>   24        2.6       6.0       7.2       0.0000734       0.070   1.8
>   25        0.6       9.0       7.1       0.0000781       0.071   1.7
>   26        1.2       5.1       7.1       0.0000808       0.071   1.7
>   27        1.3       6.5       7.0       0.0000867       0.072   1.7
>   28        1.5       4.8       7.0       0.0000891       0.072   1.6
>   29        3.8       5.2       6.9       0.0000945       0.072   1.6
>   30        2.3       6.0       6.9       0.0000959       0.072   1.6



More information about the Bioconductor mailing list